Eigen und doch fremd: warum das Immunsystem patienteneigene Stammzellen bekämpft

Erstautor Professor Dr. Tobias Deuse und Professor Dr. Sonja Schrepfer bei einer Besprechung im Labor. University of California, San Francisco

iPSC entstehen aus Körperzellen, zum Beispiel Hautzellen, die Ärzte dem Patienten entnehmen, anschließend im Labor zu Stammzellen reprogrammieren und zu dem gewünschten Zelltyp weiter züchten. Im Labor entwickeln Wissenschaftler aus ihnen etwa neue Herzmuskelzellen, um damit ein Infarkt-geschädigtes Herz zu reparieren.

Verglichen mit embryonalen Stammzellen weisen iPSC einige Vorteile auf: Zum einen sind sie ethisch unbedenklich und ihre Entnahme birgt auch keinerlei Risiken für den Zellspender. Zum anderen nahmen die Forscher bislang an, dass der Körper des Patienten die neuen, aus iPSC gezüchteten Zellen gut akzeptiert, denn eigentlich kennt er sie ja schon. Tatsächlich stößt er das neue Gewebe aber trotzdem häufig ab.

DZHK-Wissenschaftlerin Professor Dr. Sonja Schrepfer vom Universitätsklinikum Hamburg-Eppendorf und ihr Team haben nun herausgefunden, dass dafür Veränderungen in der Erbinformation der Zellen verantwortlich sind. Sie entstehen, wenn Forscher die entnommenen Körperzellen im Labor reprogrammieren und kultivieren.

Diese als Mutationen bezeichneten Veränderungen der Erbinformation wandeln die Zellen so um, dass das Immunsystem sie als fremd ansieht und bekämpft, wenn das aus ihnen gezüchtete Zellgewebe wieder in den Patienten eingesetzt wird.

An sich sind solche Mutationen nichts Ungewöhnliches und ereignen sich auch normalerweise im Körper. Doch dort beseitigt das Immunsystem die veränderten Zellen sofort und sorgt somit dafür, dass sie sich nicht anreichern können. Diese Kontrolle fehlt im Labor, sodass sich auch genetisch veränderte Zellen immer weiter vermehren.

Akzeptanz durch Tarnung

Als Konsequenz müssten die Patienten nach einer Transplantation von Gewebe aus iPSC lebenslang Medikamente einnehmen, die eine Immunantwort unterdrücken, sogenannte Immunsuppressiva. Sie verhindern zwar die Abstoßung, verursachen aber auch beträchtliche Nebenwirkungen. Unter anderem schädigen Immunsuppressiva Nieren und Leber und erhöhen das Risiko für Tumoren sowie Diabetes. „Alternativ könnte man den Zellen eine Art Tarnkappe geben“, sagt Schrepfer.

„Damit gaukelt man dem Körper des Patienten vor, dass die im Labor hergestellten Zellen seine eigenen sind, sodass sie nach der Transplantation nicht mehr abgestoßen werden.“ Diese von Schrepfer und ihren Kollegen bereits entwickelte Tarnkappen-Technologie überprüfen die Wissenschaftler zurzeit intensiv.

In Modellversuchen hat das Verfahren schon funktioniert. Die Medizinerin schätzt, dass sie die Technologie in fünf bis acht Jahren bei Patienten einsetzen können. Eine andere Strategie wäre, dass nur Zellen transplantiert werden, die nicht mutiert sind. Solch eine Qualitätskontrolle wäre laut Schrepfer aber sehr zeit- und kostenaufwendig.

Prof. Dr. Sonja Schrepfer, Klinik für Herz- und Gefäßchirurgie, Universitätsklinikum Hamburg-Eppendorf /Prof. Schrepfer forscht derzeit an der University of California San Francisco (UCSF) und ist erreichbar unter: Sonja.Schrepfer(at)ucsf.edu

De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Deuse T, Hu X, Agbor-Enoh S, Koch M, Spitzer MH, Gravina A, Alawi M, Marishta A, Peters B, Kosaloglu-Yalcin Z, Yang Y, Rajalingam R, Wang D, Nashan B, Kiefmann R, Reichenspurner H, Valantine H, Weissman IL, Schrepfer S. Nat Biotechnol. 2019 Aug 19.
DOI: 10.1038/s41587-019-0227-7

https://dzhk.de/aktuelles/news/artikel/eigen-und-doch-fremd-warum-das-immunsyste…

Media Contact

Christine Vollgraf idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Theoretische Physik: Modellierung zeigt, welche Quantensysteme sich für Quantensimulationen eignen

Eine gemeinsame Forschungsgruppe um Prof. Jens Eisert von der Freien Universität Berlin und des Helmholtz-Zentrum Berlin (HZB) hat einen Weg aufgezeigt, um die quantenphysikalischen Eigenschaften komplexer Festkörpersysteme zu simulieren. Und…

Rotation eines Moleküls als „innere Uhr“

Mit einer neuen Methode haben Physiker des Heidelberger Max-Planck-Instituts für Kernphysik die ultraschnelle Fragmentation von Wasserstoffmolekülen in intensiven Laserfeldern detailliert untersucht. Dabei nutzten sie die durch einen Laserpuls angestoßene Rotation…

Auf dem Weg zur fischfreundlichen Wasserkraft

In dem europaweiten Projekt „FIThydro“ unter Leitung der Technischen Universität München (TUM) haben Forscherinnen und Forscher in Zusammenarbeit mit Industriepartnern bestehende Wasserkraftwerke untersucht. Diese Ergebnisse nutzten sie, um neue Methoden…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close