Chemisches Werkzeug für die Infektionsforschung entwickelt

Chlamydien-Inklusionen in infizierten menschlichen Zellen, das native Sphingomyelin-Derivat in nicht-infektiösen Chlamydien-Partikeln (größere gelbe Ovale) und das metabolisierte Derivat (kleine grüne Punkte) in infektiösen Chlamydien-Partikeln.
(c) Jürgen Seibel / Universität Würzburg

Forschende aus Würzburg und Berlin stellen neue Moleküle zur Visualisierung des Sphingomyelin-Stoffwechsels vor. Der Infektionsforschung bietet das Perspektiven für innovative Therapieansätze.

Ende des 19. Jahrhunderts isolierte der deutsche Pathologe Ludwig Thudichum bisher unbekannte Fettstoffe (Lipide) aus dem Gehirn. Er nannte die neue Klasse von Molekülen Sphingolipide – nach dem griechischen Fabelwesen Sphinx, aus Respekt vor „den vielen Rätseln, die sie dem Forscher aufgab“.

Seitdem sind zahlreiche Krankheiten entdeckt worden, die durch einen gestörten Sphingolipid-Stoffwechsel im Gehirn verursacht werden, darunter Morbus Fabry und Morbus Gaucher. Sphingolipide wurden auch mit Infektionskrankheiten in Verbindung gebracht, zum Beispiel mit Virusinfektionen wie Ebola, Masern oder Covid-19, sowie mit bakteriellen Infektionen durch Pseudomonas aeruginosa oder Staphylococcus aureus, die Mittelohrentzündungen, Haut- und Lungeninfektionen und viele andere Krankheiten zur Folge haben können. Bei diesen Infektionen ist oft der Abbau des Moleküls Sphingomyelin durch das Enzym Sphingomyelinase entscheidend. Bisher war es jedoch schwierig, die Aktivität des Enzyms zu visualisieren.

Neu entwickelte Moleküle machen dies nun möglich. Forschenden aus Würzburg und Berlin ist es gelungen, ein Sphingomyelin-Derivat zu entwickeln, mit dem sich die Verteilung von Sphingomyelin sowie die Aktivität der Sphingomyelinase bei Infektionsprozessen sichtbar machen lassen.

Die Wissenschaftlerinnen und Wissenschaftler sind Teil des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Graduiertenkollegs 2581 „Metabolismus, Topologie und Kompartimentierung von membranständigen Lipid- und Signalkomponenten bei Infektionen“. Darin arbeiten Forschende aus Chemie, Physik und Biologie zusammen, um neue chemische Verbindungen zu synthetisieren und ihre Anwendbarkeit in der Infektionsforschung zu erproben.

„Bei den neuen Molekülen handelt es sich um trifunktionale Sphingomyeline auf Basis des Naturstoffs Sphingomyelin, der noch mit drei zusätzlichen Funktionen ausgestattet wurde. Es war schwierig, einen so hoch-funktionalisierten Naturstoff zu designen, der wie der ursprüngliche Naturstoff von dem Metabolismus erkannt und genutzt wird“, sagt Professor Jürgen Seibel vom Institut für Organische Chemie der Julius-Maximilians-Universität Würzburg.

Sphingomyelin-Abbau während der Entwicklung von Chlamydia-Bakterien visualisiert

Die Wissenschaftlerinnen und Wissenschaftler testeten die Funktion der von ihnen neu entwickelten Moleküle, indem sie etwa die Aktivität einer bakteriellen Sphingomyelinase auf der Oberfläche menschlicher Zellen bestimmten. Weiterhin visualisierten sie den Sphingomyelin-Abbau innerhalb menschlicher Zellen während einer intrazellulären Infektion von menschlichen Zellen mit Chlamydia-Bakterien. Chlamydien infizieren unter anderem den menschlichen Genitaltrakt, stehen aber auch im Verdacht, in infizierten Geweben zur Entstehung von Krebs in beizutragen.

Innerhalb ihrer Wirtszellen bilden Chlamydien eine replikative Organelle, die als Inklusion (Einschluss) bezeichnet wird. Die Forschenden zeigten, dass Chlamydien-Inklusionen hauptsächlich die gespaltenen Formen der trifunktionalen Sphingomyeline enthalten. Mit Hilfe der Expansionsmikroskopie und Click-Chemie beobachteten sie, dass der Anteil der verstoffwechselten Sphingomyelinmoleküle während der Entwicklung von nicht-infektiösen zu infektiösen Chlamydienpartikeln zunahm. Durch die Möglichkeit, diesen Infektionsprozess sichtbar zu machen, können nun neue gezielte Strategien gegen diese Infektionen entwickelt und getestet werden.

„Das neue chemische Werkzeug wird uns sicherlich gute Dienste leisten und kann in vielen Labors eingesetzt werden“, so Professor Seibel. „Unser Ziel ist es, damit neue anti-infektiöse oder immuntherapeutische Strategien für die Medikamentenentwicklung zu identifizieren, die durch Modulation des Sphingolipid-Stoffwechsels zur Bekämpfung von Infektionskrankheiten eingesetzt werden können.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jürgen Seibel, Institut für Organische Chemie, Universität Würzburg, T +49 931 31- 85326, seibel@chemie.uni-wuerzburg.de

Originalpublikation:

Marcel Rühling, Louise Kersting, Fabienne Wagner, Fabian Schumacher, Dominik Wigger, Dominic A. Helmerich, Tom Pfeuffer, Robin Elflein, Christian Kappe, Markus Sauer, Christoph Arenz, Burkhard Kleuser, Thomas Rudel, Martin Fraunholz, and Jürgen Seibel: Trifunctional sphingomyelin derivatives enable nanoscale resolution of sphingomyelin turnover in physiological and infection processes via expansion microscopy. Nature Communications, DOI: 10.1038/s41467-024-51874-w, 28. August 2024, open access https://www.nature.com/articles/s41467-024-51874-w

https://www.uni-wuerzburg.de/aktuelles/pressemitteilungen/single/news/sphingomyelin-tfsm/

Media Contact

Robert Emmerich Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Kommunikation mithilfe von Molekülen

Die Europäische Union finanziert ein Projekt für die Entwicklung eines neuen Konzepts der Informationsübertragung für aktive implantierte medizinische Geräte im Rahmen ihres Förderprogramms Horizont Europa. Für das Projekt ERMES stellt…

Konzeptneurone sind Bausteine der Erinnerung

Bonner Forschende klären die Funktion von spezialisierten Nervenzellen bei der Gedächtnisbildung. Spezialisierte Nervenzellen im Schläfenlappen reagieren hochselektiv auf Bilder und Namen einer einzelnen Person oder konkreter Objekte. Forschende des Universitätsklinikums…

Innovative Forschung enthüllt neuen Weg zur Ethanolproduktion aus CO2

In einer bahnbrechenden Studie, die in der renommierten Zeitschrift „Energy & Environmental Science“ veröffentlicht wurde, haben Wissenschaftler*innen der Abteilung Interface Science am Fritz-Haber-Institut eine neuartige Methode zur Umwandlung des Treibhausgases…

Partner & Förderer