Bürsten in 3D

Amerikanische Wissenschaftler präsentieren eine neue einfache Methode, mit der sich dreidimensionale Nano-Muster kontrolliert aus Polymerbürsten herstellen lassen. (c) Wiley-VCH<br>

Unter Polymerbürsten versteht man Polymere, bei denen einzelne Polymerketten dicht an dicht auf eine Oberfläche gepfropft sind und die Ketten wie Borsten bei einer Bürste abstehen. Amerikanische Wissenschaftler präsentieren in der Zeitschrift Angewandte Chemie nun eine neue einfache Methode, mit der sich dreidimensionale Nano-Muster kontrolliert aus Polymerbürsten herstellen lassen.

Die derzeitigen und zukünftigen Anwendungen für Polymerbürsten sind vielfältig. So kann eine Beschichtung mit Polymerbürsten die Adsorption von Proteinen an Kunststoffoberflächen, beispielsweise in künstlichen Herzklappen oder Dialysegeräten verhindern. Weitere Bereiche sind die Herstellung der nächsten Generation mikroelektronischer Geräte, biokompatible Beschichtungen von Implantaten, chemische Sensoren und neue „intelligente“ Materialien.

Während Fortschritte hinsichtlich neuer Bürsten-Strukturen gemacht wurden, fehlt es derzeit noch an Methoden, die eine ausreichende zeitliche und räumliche Kontrolle über den Aufbauprozess bieten. Bisher wird meist eine selbstorganisierte Monoschicht eines Initiators auf einem Substrat hergestellt, auf die dann Polymerketten aufwachsen können. Um Muster zu erhalten, muss bereits der Initiator im entsprechenden Muster auf das Substrat aufgetragen sein – dreidimensionale Strukturen sind so nicht realisierbar.

Craig J. Hawker und ein Team von der University of California in Santa Barbara und The Dow Chemical Company (Midland, Michigan) haben nun eine neue Methode entwickelt, die den zeitlich und räumlich kontrollierten Aufbau von Bürsten auf einer einheitlichen Initiatorschicht ermöglicht. Die einfache Methode basiert auf einer durch Licht ausgelösten radikalischen Polymerisation. Wie hoch die Bürsten an einer bestimmten Stelle wachsen, hängt nur von der lokalen Länge und Intensität der Bestrahlung ab.

Um Muster zu erzeugen, können herkömmliche Photomasken verwendet werden. Sie haben Lücken an Stellen, die bestrahlt werden sollen, und schirmen das Licht an den anderen Stellen ab. So lassen sich großflächige Muster mit Submikrometer-Auflösung in einem Schritt herstellen. Möglich macht dies ein spezieller Iridium-basierter Photo-Katalysator. Er bleibt nach Bestrahlung immer nur sehr kurze Zeit aktiv, daher kann er im aktiven Zustand nicht weit in die nicht bestrahlten Gebiete eindringen. Auch Masken mit Grauschattierung können verwendet werden, etwa mit kontinuierlich zunehmender Lichtdurchlässigkeit zur Herstellung von Gradientenmustern.

Ein weiterer Vorteil der neuen Methode: Während der Polymerisation schieben sich die neu eingebauten Monomere immer hinter dem Initiator in die Kette ein, der Initiator verbleibt als vorderstes Ende der wachsenden Kette. Da er, anders als bei bisherigen Methoden, nicht zerstört wird und weiterhin an der richtigen Stelle zur Verfügung steht, kann die Polymerisation jederzeit unterbrochen und wieder neu gestartet werden. Auf diese Weise kann die verwendete Maske während des Prozesses beliebig oft gewechselt und sogar das verwendete Monomer variiert werden. Der Komplexität der zugänglichen Muster und Anwendungen sind so kaum noch Grenzen gesetzt.

Angewandte Chemie: Presseinfo 23/2013

Autor: Craig J. Hawker, University of Califormia, Santa Barbara (USA), http://hawkergroup.mrl.ucsb.edu/craig-j-hawker

Permalink to the article: http://dx.doi.org/10.1002/ange.201301845

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Weitere Informationen:

http://presse.angewandte.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Physiker Professor Simon Stellmer von der Universität Bonn beim Justieren eines Lasers, der für Präzisionsmessungen eingesetzt wird.

Simon Stellmers GyroRevolutionPlus erhält ERC-Zuschuss von 150 000 € für Katastrophenwarnungen

Europäischer Forschungsrat fördert Innovation aus der Physik an der Uni Bonn „Mit GyroRevolutionPlus verbessern wir die Messgenauigkeit von Ringlaserkreiseln, sogenannten Gyroskopen, mit denen wir langsame und tiefliegende Erdrotationen oder auch…

Unterschiedlich regulierte kleine RNAs aus Blut oder Haut sind mögliche Biomarker, die in Zukunft helfen könnten, Fibromyalgie schneller und besser zu diagnostizieren und damit unter anderem die Stigmatisierung abzubauen.

Objektive Diagnose von Fibromyalgie: Neue Innovationen Erklärt

Prof. Dr. Nurcan Üçeyler und Dr. Christoph Erbacher von der Neurologischen Klinik des Uniklinikums Würzburg (UKW) haben ihre neuesten Forschungsergebnisse zum Fibromyalgie-Syndrom (FMS) in der Fachzeitschrift Pain veröffentlicht. Sie fanden…

Links: EHT-Bilder von M87* aus den Beobachtungskampagnen 2018 und 2017. Mitte: Beispielbilder aus einer generalrelativistischen magnetohydrodynamischen (GRMHD) Simulation zu zwei verschiedenen Zeiten. Rechts: Dieselben Simulations-Schnappschüsse, unscharf gemacht, um der Beobachtungsauflösung des EHT zu entsprechen.

Die neueste M87-Studie des EHT bestätigt die Drehrichtung des Schwarzen Lochs

Erster Schritt auf dem Weg zu einem Video vom Schwarzen Loch FRANKFURT. Sechs Jahre nach der historischen Veröffentlichung des ersten Bildes eines Schwarzen Lochs stellt die Event Horizon Telescope (EHT)…