Dendritische Zellen ticken anders

Sie sehen so ähnlich aus wie Nervenzellen und sorgen dafür, das Immunsystem des Menschen in Schuss zu halten: die dendritischen Zellen. Ihre Aufgabe ist es, körperfremde Substanzen (Antigene) zu erkennen, aufzunehmen und zu bearbeiten, um sie anschließend an andere Immunzellen weiterzugeben.

Dr. Natalia Ronkina und Professor Dr. Matthias Gaestel vom Institut für Physiologische Chemie der Medizinischen Hochschule Hannover (MHH) haben in Zusammenarbeit mit Wissenschaftlern der Universität Dundee (Schottland) nun ein wichtiges Detail bei der Signalverarbeitung zur Antigenaufnahme der dendritischen Zelle entdeckt: Sie funktionieren anders als alle anderen Körperzellen.

Bekannt war bislang folgendes: Dendritische Zellen erkennen Antigene an ihrer Oberfläche. Sobald ein Antigen an der dendritischen Zelle andockt, werden bestimmte Zellmembran-Rezeptoren (Toll-like receptors TLR) aktiviert. Es folgt ein komplizierter biochemischer Signal-Prozess, die kaskadenartige Phosphorylierung von Proteinen (Eiweißen) im Zellinneren mit Hilfe von Proteinkinasen. Dieser Prozess besteht aus vielen Schritten – und steuert die Aufnahme und Bearbeitung der Antigene in der dendritischen Zelle. Das bearbeitete Antigen gelangt dann wieder an die Oberfläche der dendritischen Zelle. Nun erkennen andere Immunzellen den „Feind“ im Körper. So genannte T-Zellen werden aktiviert. Sie machen die Eindringlinge unschädlich.

Das Forscherteam hat nun im Tiermodell (MK2/3-knockout Maus) herausgefunden, dass die Signalverarbeitung zur Antigenaufnahme in dendritischen Zellen parallel auf zwei verschiedenen Wegen funktioniert – einem bekannten und einem bisher unbekannten. Der neu entdeckte Signalweg verläuft über die Proteinkinasen MK2 und MK3. Hierbei können – genau wie auf dem bisher bekannten Weg – Moleküle aktiviert werden, die eine Aufnahme des Antigens auf den Weg bringen.

„Diese besondere parallel funktionierende Signalverarbeitung gibt es nur bei dendritischen Zellen – sie ,ticken´ anders als die restlichen Körperzellen“, betont Professor Gaestel. Dieses Ergebnis der Grundlagenforschung könnte ein Ansatz für die Entwicklung neuer Immunsuppressiva sein und wird in der November-Ausgabe 2007 der Fachzeitschrift Nature Immunology veröffentlicht [ 8, (11), 1227-1235].

Weitere Informationen erhalten Sie bei Professor Dr. Matthias Gaestel, Telefon (0511) 532-2824.

Media Contact

Stefan Zorn idw

Weitere Informationen:

http://www.mh-hannover.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Hochleistungs-Metalloptiken mit Lothar-Späth-Award 2021 ausgezeichnet

Fraunhofer IOF und HENSOLDT Optronics entwickeln optisches Teleskop zur Erforschung des Jupitermondes Ganymed. Forscher des Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF sind gemeinsam mit ihrem Partner für die Entwicklung…

Chemiker designen „molekulares Flaggenmeer“

Forschende der Universität Bonn haben eine molekulare Struktur entwickelt, die Graphit-Oberflächen mit einem Meer winziger beflaggter „Fahnenstangen“ bedecken kann. Die Eigenschaften dieser Beschichtung lassen sich vielfältig variieren. Möglicherweise lassen sich…

Der nächste Schritt auf dem Weg zur Batterie der Zukunft

Kompetenzcluster für Festkörperbatterien „FestBatt“ des Bundesministeriums für Bildung und Forschung geht in die zweite Förderphase – Koordination durch Prof. Dr. Jürgen Janek vom Gießener Zentrum für Materialforschung – Rund 23…

Partner & Förderer