Zentrale Stellschraube im Insulinstoffwechsel entdeckt

Manchmal ähnelt Wissenschaft einem Staffellauf: 1996 fand der Biochemiker Professor Dr. Waldemar Kolanus in Säugetieren eine Gruppe von Zelleiweißen, die Cytohesine, und beschrieb ihre Funktion bei der Immunabwehr. Zwei seiner Kollegen im Bonner LIMES-Zentrum fanden nun eine ganz neue und völlig unerwartete Funktion dieser Eiweiße mit großer Relevanz für die Medizin.

„Wir wollten wissen, ob es Cytohesine auch in der Taufliege Drosophila gibt und welche Aufgaben sie dort haben“, erinnert sich der Entwicklungsbiologe Prof. Dr. Michael Hoch. Seine Mitarbeiter und er wurden tatsächlich fündig: Sie entdeckten ein Protein, das den Säugetier-Cytohesinen sehr ähnelt. Interessanter noch: Taufliegen, bei denen die Bauanleitung für dieses Gen defekt ist, sind kleinwüchsig. Die Forscher nannten das Cytohesin denn auch „Steppke“. „Der Größeneffekt zeigte uns, dass 'Steppke' eine Schlüsselrolle im Insulinstoffwechsel spielen könnte – eine völlig neue Funktion für Cytohesine“, sagt Hoch.

Neue Medikamente gegen Diabetes

Wie groß Pflanzen oder Tiere maximal werden können, ist in ihren Genen festgeschrieben. Doch ob sie dieses Potenzial ausschöpfen, wird durch eine Reihe weiterer Faktoren beeinflusst. Einer davon ist das Insulin. Säugetiere schütten dieses Hormon nach dem Essen als Reaktion auf den steigenden Blutzuckerspiegel aus. Über eine komplizierte Signalkette sorgt es dafür, dass Muskeln und Organe Blutzucker aufnehmen. Aber nicht nur das: Die Insulin-Signalkaskade entscheidet während des Wachstums auch über Größe und Zahl der Körperzellen. „Steppke“ übernimmt in dieser Signalkaskade augenscheinlich eine Schlüsselfunktion. „Taufliegen-Larven werden in den ersten drei Tagen nach dem Schlüpfen 200mal schwerer“, erläutert Hoch. „Wenn bei ihnen das Steppke-Gen mutiert ist, wachsen sie deutlich langsamer.“ Eine Reihe weiterer Beobachtungen stützen die These, dass „Steppke“ für den Insulinstoffwechsel von Drosophila extrem wichtig ist. Wenn es in Säugetieren ein Cytohesin mit ähnlicher Funktion gäbe, wäre das beispielsweise für die Diabetes-Forschung hoch interessant.

Parallel zu Hoch hatte Professor Dr. Michael Famulok einen Wirkstoff hergestellt, der Cytohesine hemmt, das so genannte SecinH3. „Wir haben diesen Inhibitor an Mäuse verfüttert“, erläutert der Biochemiker. Die Nagetiere verfügen nicht wie Taufliegen über ein Cytohesin, sondern gleich über vier. Famulok wollte herausfinden, ob sie im Insulinstoffwechsel der Maus eine ähnliche Schlüsselrolle einnehmen wie „Steppke“ in der Fliege – und wurde fündig: „Die Leberzellen der mit SecinH3 behandelten Tiere reagierten bei weitem nicht mehr so stark auf Insulin, wie sie es sollten.“ Mediziner kennen diesen Effekt: Eine derartige „Insulin-Resistenz“ gilt als Warnsignal für einen entstehenden Typ II-Diabetes.

Allein in Deutschland leiden sechs Millionen Menschen an dieser Form der Zuckerkrankheit. Sie wird durch falsche Ernährung und Bewegungsmangel ausgelöst – Tendenz: steigend. Famulok hält nun auch neue Medikamente für möglich: „Es gibt eine Klasse von Schaltermolekülen, die von Cytohesinen aktiviert werden. Diese Aktivierung ist offenbar nötig für die Signalweiterleitung. Wenn es uns gelingt, die Schaltermoleküle mit einem geeigneten Wirkstoff zu stimulieren, könnten wir damit die Insulin-Resistenz vielleicht rückgängig machen.“ Bei der Suche nach einer solchen Arznei könnte eine neue Methode helfen, die Famulok im Nature-Paper beschreibt. Mit ihrer Hilfe hat seine Arbeitsgruppe auch schon den Hemmstoff SecinH3 gefunden.

Langes Leben dank Gendefekt?

Der gemeinsame Vorfahr von Taufliege und Maus lebte vor mindestens 900 Millionen Jahren. Dennoch sind sich „Steppke“ und das entsprechende Maus-Cytohesin so ähnlich, dass SecinH3 gegen beide wirkt. „Wir haben den Hemmstoff an unsere Fliegenlarven verfüttert“, erklärt Hoch. „Sie entwickelten sich dann genauso, als wäre ihr 'Steppke'-Gen defekt.“

Die Erbanlage hat aber noch eine ganz andere Wirkung, die die Phantasie der Forscher beflügelt: Fliegen, bei denen „Steppke“ defekt ist, leben deutlich länger als ihre Artgenossen. „Ein spannender Effekt“, findet Hoch. „Das müssen wir unbedingt weiter untersuchen.“

Zu dieser Pressemitteilung ist Footage-Material auf Mini-DV vorhanden. Bitte setzen Sie sich bei Interesse mit Frank Luerweg, 0228/73-4728, fluerweg@uni-bonn.de, in Verbindung.

Kontakt:
Professor Dr. Michael Famulok
LIMES-Zentrum der Universität Bonn
Telefon: 0228/73-1787
E-Mail: m.famulok@uni-bonn.de
Professor Dr. Michael Hoch
LIMES-Zentrum der Universität Bonn
Telefon: 0228/73-4621
E-Mail: m.hoch@uni-bonn.de

Media Contact

Frank Luerweg idw

Weitere Informationen:

http://www.uni-bonn.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Zukunft der Robotik ist soft und taktil

TUD-Startup bringt Robotern das Fühlen bei. Die Robotik hat sich in den letzten Jahrzehnten in beispiellosem Tempo weiterentwickelt. Doch noch immer sind Roboter häufig unflexibel, schwerfällig und zu laut. Eine…

Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein

Perowskit-Halbleiter versprechen hocheffiziente und preisgünstige Solarzellen. Allerdings reagiert das halborganische Material sehr empfindlich auf Temperaturunterschiede, was im Außeneinsatz rasch zu Ermüdungsschäden führen kann. Gibt man jedoch eine dipolare Polymerverbindung zur…

EU-Projekt IntelliMan: Wie Roboter in Zukunft lernen

Entwicklung eines KI-gesteuerten Manipulationssystems für fortschrittliche Roboterdienste. Das Potential von intelligenten, KI-gesteuerten Robotern, die in Krankenhäusern, in der Alten- und Kinderpflege, in Fabriken, in Restaurants, in der Dienstleistungsbranche und im…

Partner & Förderer