Molekularen Maschinen bei der Arbeit zugesehen

Detailansicht der dreidimensionalen, molekularen Struktur von hGBP1. Gezeigt ist ein Ausschnitt des Proteins, der das katalytische Zentrum darstellt, der Cofaktor in rot und grau. Durch Überlagerung zweier Zustände wird die Strukturveränderung sichtbar, die durch die Assemblierung der Proteine induziert wird.

Forscher klären katalytischen Mechanismus von antiviralem Protein

RUB-Chemiker berichten in NATURE

Die Aktivität eines menschlichen Proteins, das an der Abwehr von Viren und anderen Krankheitserregern beteiligt ist, konnte der RUB-Chemiker Prof. Dr. Christian Herrmann in Zusammenarbeit mit Forschern des Max-Planck-Instituts in Dortmund und einem französischen Labor auf molekularer Ebene aufklären: Ein funktionelles Merkmal der Proteinklasse hGBP1 (humanes Guanylat-bindendes Protein 1) besteht in der katalytischen Spaltung von sog. Cofaktor-Molekülen. Damit gehen die geordnete Zusammenlagerung (Assemblierung) und strukturelle Umwandlungen der Proteine einher, die für ihre biologische Wirkung von Bedeutung sind. Das von den Forschern erarbeitete Modell kann zum Verständnis der Funktionsweise einer Vielzahl ähnlicher Proteine dienen und Hinweise für die gezielte Behandlung verschiedener Krankheiten geben. Über ihre Ergebnisse berichten die Forscher in der aktuellen Ausgabe des Wissenschaftsmagazin NATURE.

Funktionsweise molekularer Maschine aufgeklärt

Das Enzym hGBP1 gehört zu einer Klasse von Proteinen, von denen einige eine wichtige Funktion bei der Abwehr von Viren haben, während andere für das Abschnüren von Membranbläschen im Innern der Zelle verantwortlich sind – dies dient der Aufnahme von Substanzen in die Zelle und der Regulation von Rezeptoren an der Zelloberfläche. Von hGBP1 ist eine antivirale Wirkung und ein Einfluss auf die Bildung von Blutgefäßen (Angiogenese) bekannt. Charakteristisch für das Protein ist die Bindung und katalytische Spaltung eines Cofaktors, der einerseits die Struktur und damit die biologische Aktivität des jeweiligen Proteins reguliert. Zum anderen wird durch diesen Spaltungsvorgang bei einigen Proteinen aber auch die Energie für größere, strukturelle Änderungen und damit für die mechanische Arbeit dieser kleinen, molekularen Maschinen geliefert. „Wir haben herausgefunden, dass die hGBP1-Moleküle nach Bindung eines bestimmten Cofaktors miteinander kommunizieren und eine katalytische Spaltung des Cofaktors stimulieren“, erklärt Prof. Herrmann. Zum ersten Mal konnten die Forscher zeigen, wie Proteine durch Selbst-Assemblierung eine katalytische Wirkung hervorrufen, die auf ihr eigenes Verhalten und ihre Funktion zurückstrahlt.

Interdisziplinärer Erfolg

Das Forschungsergebnis ist das Resultat langjähriger Arbeiten zur Aufklärung eines Katalysemechanismus auf molekularer Ebene. Mit Hilfe vielfältiger experimenteller Methoden aus den Bereichen der biophysikalischen Chemie, der Biochemie und der Röntgen-Strukturanalyse ist es gelungen, die Funktionsweise eines Enzyms in molekularem Detail darzustellen. Durch einen experimentellen Trick konnten sogar sehr kurzlebige Zustände des Enzyms, die besonders kritisch für den katalytischen Vorgang sind, festgehalten und näher untersucht werden. Es ist gelungen, die Beobachtungen und Teilerkenntnisse, die sich mit den verschiedenen Methoden ergaben, zu einem stimmigen Modell zusammenzuführen. „Es hat sich einmal mehr gelohnt, die interdisziplinäre Arbeit zu suchen und eine wissenschaftliche Fragestellung von allen Seiten zu beleuchten“, so Prof. Herrmann.

Anwendung für Therapien

Die untersuchte Klasse von Proteinen hat außerordentlich vielseitige, biologische Funktionen. Gestörte (mutierte) Varianten dieser Proteine sind für zahlreiche Krankheiten verantwortlich, darunter auch Krebs. Untersuchungen der molekularen Mechanismen zeigen nicht nur, wie ein Protein funktioniert, sondern auch, wie und warum es bei einer bestimmten Störung nicht mehr funktioniert. Dies gibt der Forschung Ansatzpunkte für die Entwicklung von Wirkstoffen und zeigt Möglichkeiten auf, wie eine Krankheit gezielt zu bekämpfen ist. Das hGBP1 kann als Modell für viele andere Enzyme dieser Klasse dienen. „Für unsere Promovierenden und Studierenden ist an unserer Arbeit besonders faszinierend, dass sie molekulare Grundlagen des Lebens erforschen, die eine deutlich erkennbare Relevanz auch für medizinische Anwendungen haben“, so Prof. Herrmann.

Titelaufnahme

Agnidipta Ghosh, Gerrit J. K. Praefcke, Louis Renault, Alfred Wittinghofer & Christian Herrmann: How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. In NATURE, Volume 439, Number 7080, 2.März 2006

Weitere Informationen

Prof. Dr. Christian Herrmann, Lehrstuhl für Physikalische Chemie I (Prof. Dr. Christof Wöll), Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-24173, E-Mail: chr.herrmann@rub.de

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Intelligentere Roboter dank ROS

Am 15. und 16. Dezember 2020 lädt das Fraunhofer IPA zum achten Mal zur ROS-Industrial Conference, die diesmal virtuell stattfindet. Sie bietet Aktuelles aus Wissenschaft und Industrie rund um das…

Weltraumteleskop Gaia misst die Beschleunigung unseres Sonnensystems

Die Messung der Beschleunigung unseres Sonnensystems durch Astronomen der TU Dresden ist ein wissenschaftliches Highlight des nun erscheinenden dritten Gaia-Katalogs. Mit dessen Veröffentlichung am 3. Dezember 2020, Punkt 12:00 Uhr,…

Virtuelles Lasersymposium LSE´21

Technologie-Trends für die Elektromobilität Je mehr die Elektromobilität in Schwung kommt, desto stärker sind Technologien gefragt, die eine wirtschaftliche Produktion und Kontaktierung von effizienten Energiespeichersystemen forcieren. Welche neuen Wege und…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close