Haarige Füße kleben besser an einer feuchten Decke

Nanostrukturen auf der Fußsohle eines Geckos: Dank ungefähr einer Milliarde hierarchisch organisierter Nanohärchen an seiner Fußsohle kann der Gecko - im Unterschied zum Menschen - auch an Wänden und Decken spazieren gehen. Bild: Max-Planck-Institut für Metallforschung

Forscher des Max-Planck-Instituts für Metallforschung zeigen, dass Feuchtigkeit die Haftkraft der Nanohärchen an einem Gecko-Fuß verstärkt

Der Gecko ist der wohl bekannteste Kletterkünstler: Es ist das schwerste Tier, das sich kopfüber an nahezu allen Oberflächen festhalten kann. Deshalb wird das feinhaarige Haftsystem seines Fußes intensiv erforscht. Doch erst jetzt ist es Wissenschaftlern des Max-Planck-Instituts für Metallforschung in Stuttgart mit hochauflösender Mikrokopie und speziellen Tricks gelungen, die Haftmechanismen an der Gecko-Fußsohle – ca. eine Milliarde von Nanohärchen pro Fuß – auch im kleinsten Detail zu untersuchen. Dabei haben die Forscher herausgefunden, dass die Haftfähigkeit des Geckos im Nanometer-Bereich durch Feuchtigkeit gesteigert wird. Diese Erkenntnis ist wichtig für die Entwicklung künstlicher, sich am Vorbild der Natur orientierender Haftsysteme, wie neuartiger selbsthaftender Klebebänder (PNAS, Early Edition, 8. November 2005).

An der Sohle eines Gecko-Fußes sitzen etwa eine Milliarde so genannter Spatulae – winzige, etwa 200 Nanometer breite und ebenso lange Hafthärchen. Diese sind für den direkten Kontakt des Geckos mit seiner Umgebung verantwortlich. In einem dreigliedrigen, hierarchisch geordneten Haftsystem sitzen diese Nano-Hafthärchen an den so genannten Setae, die etwa 100 Mikrometer lang sind und mit einer Breite von 6 Mikrometern gerade einmal ein Zehntel des Durchmessers eines menschlichen Haares erreichen. Die reihenförmig angeordneten Setae bilden wiederum 400 bis 600 Mikrometer lange Lamellen, die bereits mit dem menschlichen Auge gut zu sehen sind (vgl. Abb.).

Dieses sich über drei Ebenen immer feiner verästelnde Haftsystem erlaubt es dem Gecko, mit seinen Füßen auf nahezu allen Oberflächen zu haften und selbst kopfüber an der Zimmerdecke zu marschieren. Bisher war noch unklar, welcher Mechanismus nun hauptsächlich für die extreme Haftkraft des Geckos verantwortlich ist. Klar war, dass das „trockene“ Haftsystem ohne eigene Sekretausscheidung funktioniert. Doch es nutzt das Wasser, das auf jeder irdischen Oberfläche in Monolagen als ultradünner Film vorhanden ist.

Bisher wurden Experimente lediglich auf der Ebene einzelner Lamellen und Setae (100 bis 1000 Spatulae) durchgeführt. Jetzt ist den Stuttgarter Max-Planck-Forschern erstmals mit Hilfe eines Rasterkraftmikroskops (Atomic Force Microscope, AFM) gelungen, auch die Haftkraft einer einzelnen Spatulae zu messen. Die neue Methode wurde im März 2005 veröffentlicht (s. Originalveröffentlichung). Die Forscher haben dazu die Haftkraft auf ganz unterschiedlich wasserliebenden Substraten sowie bei unterschiedlich hoher Luftfeuchtigkeit gemessen.

Dazu lösten die Forscher zunächst mit einer Nadelspitze einzelne Setae vom Fuß eines Gekko geckos ab. Unter dem Binokularmikroskop fixierten sie das isolierte Haar mittels eines Klebstofftropfens an der Cantileverspitze und richteten es senkrecht aus. Dieser Tropfen besaß in etwa die Größe der für den Transfer verwendeten Spitze einer menschlichen Wimper. Anschließend bearbeiteten die Forscher diese Probe mit einem fokussierten Ionenstrahlmikroskop (engl. Focussed Ion Beam, FIB – vergleichbar einem Rasterelektronenmikroskop). Damit die Probe dabei nicht beschädigt wird, legten sie einen niedrigen Strahlstrom von lediglich 11 Pico-Ampere an. Ausgehend von der Klebestelle schnitten sie entlang der Seta an jeder Haarverzweigung einen Ast ab. Auf diese Weise reduzierten sie die Anzahl der Spatulae von ursprünglich mehreren hundert auf weniger als fünf.

Die Kraftmessungen selbst führten die Wissenschaftler an speziell präparierten Wafer-Oberflächen sowie an Glasplättchen bei unterschiedlicher Luftfeuchtigkeit durch. Die erzeugten eher wasserliebenden oder wasserabweisenden Oberflächen unterschieden sich im Grad ihrer Benetzung. Bei den Messungen zeigte sich, dass je wasserliebender (hydrophiler) das Substrat ist, desto größer sind auch die Haftkräfte. Doch die geänderte Oberflächenchemie lässt für sich allein genommen noch keinen eindeutigen Schluss zu, welchen Einfluss die Kapillarkräfte im Unterschied zu den ebenfalls wirkenden van der Waals-Effekten haben. Hierzu bedurfte es noch zusätzlicher Haftexperimente bei unterschiedlichen Luftfeuchtigkeiten. Die Versuche zeigten, dass mit steigender Luftfeuchtigkeit auch die Kapillarkräfte anwachsen. Nur beide Ergebnisse zusammen genommen erklären, dass ultradünne Wasserschichten, wie sie zwischen einer Gecko-Spatula und jedwedem Substrat vorhanden sind, einen eindeutigen Einfluss auf die Stärke der Haftkräfte haben. Den Forschern gelang es zudem, die experimentell gewonnenen Daten mit Hilfe eines theoretischen Modells zu erklären.

Die neuen Forschungsergebnisse geben detaillierte Einblicke, welche Haftmechanismen auf der Nanometerskala an der Fußsohle eines Geckos wirken und helfen bei der Entwicklung neuartiger, wieder verwendbarer Klebebänder.

Originalveröffentlichung:

Huber, G., Mantz, H., Spolenak, R., Mecke, K., Jacobs, K., Gorb, S. and Arzt, E.
Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements
PNAS, vol. 102, no. 45, 16293 – 16296, 8. November 2005

Huber, G., Gorb, S., Spolenak, R. and Arzt, E.
Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy
Biol. Lett., vol. 1, no. 1, 2 – 4, 22. März 2005

Media Contact

Dr. Andreas Trepte Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer