Entfernung von Stickoxiden aus Dieselabgasen

Im Ergebnis eines Verbundprojektes, das von der high throughput experimentation company (hte) koordiniert und vom Bundesministerium für Bildung und Forschung (BMBF) gefördert wird, gelang es Leipziger Chemikern, Stickoxide aus Dieselabgasen zu entfernen. Damit konnte ein Beitrag zum Schutz der Umwelt geleistet werden.

251.000 Euro standen dem Institut für Technische Chemie der Universität Leipzig, das von Prof. Helmut Papp geleitet wird, für ihre Arbeiten zur Schadstoffreduzierung von Dieselabgasen zur Verfügung. Die Gesamtfördersumme des Verbundprojektes, an dem Partner aus Wissenschaft und Industrie beteiligt sind, betrug 3,5 Millionen Euro. Der Arbeitsgruppe um Prof. Papp gelang es, mit einem neuartigen Verfahren, Stickoxide aus Dieselabgasen zu entfernen. Stickoxide sind als Atemgifte, Verursacher des sauren Regens und als Ozonbildner eine Gefährdung für die Umwelt.

Das im Rahmen des Kompetenznetzwerkes für Katalyse (ConNeCat), das an der Gesellschaft für Chemische Technik und Biotechnologie e.V. (DECHEMA) angesiedelt ist, strukturierte sog. Leuchtturmprojekt sollte in einem multidisziplinären Ansatz neue Materialien und Verfahren zur katalytischen Entfernung von Stickoxiden (NOx) und Rußpartikeln aus Dieselabgasen entwickeln. Die Wissenschaftler um Prof. Papp präparierten rhodiumhaltige Katalysatoren mit speziellen Gelen bzw. Mikroemulsionen. Die untersuchten Katalysatoren wurden in unterschiedlichen Zuständen untersucht.

Mit dem TAP2-Reaktor-System (Temporal Analysis of Products) wurde zunächst der Mechanismus der Stickoxid-Zersetzung im Temperaturbereich von 100 bis 550°C untersucht. Der NO-Umsatz lag dabei über den gesamten Temperaturbereich mit über 90 Prozent sehr hoch. Dabei wurde umso mehr Stickstoff gebildet, je höher die Temperatur und der Bedeckungsgrad der Katalysatoroberflächen waren. Der Bedeckungsgrad ist abhängig von der Konzentration der Moleküle auf der rhodiumhaltigen Oberfläche des Katalysators.

Damit sich der gewünschte molekulare Stickstoff aus den dissoziativ adsorbierten NO-Molekülen bilden kann, werden zwei an der Oberfläche adsorbierte benachbarte Stickstoffatome benötigt, die Stickstoffmoleküle bilden können. Je mobiler die Stickstoffatome sind – und das werden sie, je höher die Temperatur ist – desto häufiger kommt es zur Kombination zu N2 und zur Desorption der Stickstoffmoleküle (N2). Ebenso ist mit steigendem Bedeckungsgrad der Oberfläche die Wahrscheinlichkeit, dass zwei Stickstoffatome benachbart sind, höher.

Die im Institut für Technische Chemie hergestellten Katalysatorproben wurden ergänzt durch Katalysatoren, die die high throughput experimentation company (hte) zur Verfügung stellte. Mit einer speziellen Apparatur (Steady State Transient Kinetic Analysis, kurz SSITKA-Apparatur genannt) wurden die Proben mit online MS-Analytik bei Temperaturen zwischen 100 und 400°C untersucht. Das Ergebnis: Ab 200°C wurden die Stickoxide vollständig umgesetzt und selektiv als Stickstoff desorbiert, unter der Vorausetzung das die Katalysatoren vorher mit Wasserstoff reduziert wurden. Bei abnehmendem NO-Umsatz, d.h. am fast vollständig oxidierten Katalysator, wurde die Bildung von Lachgas (N2O) beobachtet, d.h. der Katalysator war dann weitgehend unwirksam.

Mit ihren Untersuchungen leisteten die Leipziger Wissenschaftler einen Beitrag zum Umweltschutz. Das Projekt wird weitergeführt.

Weitere Informationen: Prof. Dr. Helmut Papp, Telefon: 0341 97-36300, E-Mail: papp@chemie.uni-leipzig.de

Media Contact

Randy Kühn idw

Weitere Informationen:

http://techni.tachemie.uni-leipzig.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer