Gekrümmte Oberflächen haben Narben

Die optimale Struktur hat „Narben“ – zumindest wenn es sich dabei um eine gekrümmte, kristalline Oberfläche handelt. Das hat ein internationales Forscherteam um Prof. Dr. Andreas Bausch von der Technischen Universität München erstmals gezeigt.

Mikroskopische Aufnahmen von winzigen Polymerkugeln, die sich auf der Oberfläche eines Wassertröpfchens angeordnet haben. Auf dem unteren Bild sind die einzelnen, nur einen Mikrometer kleinen Polymerkugeln zu erkennen.

Seit fast hundert Jahren rätseln Wissenschaftler, wie sich Atome, Moleküle – oder im Modell kleine Kugeln – auf gekrümmten Oberflächen anordnen. Genau das konnte der Biophysiker Bausch nun in einem Modelsystem mikroskopisch beobachten. „Es ist ein ganz einfaches System und es bestätigt unglaublich die Theorie,“ erklärt Bausch. Berechnungen hatten die „Narben“ bereits vorhergesagt, ein experimenteller Beweis stand jedoch noch aus. Vermutlich sind diese Narben weit verbreitet in der Natur, schreiben die Forscher in der aktuellen Ausgabe des Fachblatts „Science“ (Volume 299, 14.3.2003). So sollten sie etwa auf der Oberfläche kugelförmiger Bakterien auftreten oder bei Riesen-Fullerenen.

In der Ebene ist die optimale Packung gleich großer Kugeln längst bekannt: Sie sitzen dann am dichtesten beieinander, wenn jede Kugel von sechs weiteren umgeben ist – wie die mittlere Billardkugel bei Spielbeginn. Auf einer gekrümmten Oberfläche funktioniert diese Anordnung jedoch nicht. Es treten Fehlordnungen auf: Manche Kugeln haben nur noch fünf Nachbarn. Erst die Kombination dieser Fehlordnungen mit Kugeln in ungestörter Umgebung ermöglicht, dass die Kugeln eng gepackt auf der gekrümmten Fläche lagern. Anschaulich zeigt das ein Fußball: Er ist aus genau 12 Fünfecken und 20 Sechsecken zusammen genäht. In der richtigen Anordnung ergeben sie den bekanntlich runden Ball.

Was aber, wenn man so einen Fußball aufbläst? So groß, dass ein Beobachter – stünde er auf dem Ball – gar keine Krümmung mehr sehen würde? Gilt dann die Anordnung der Kugeln für die Ebene oder gruppieren sie sich wie auf einem Fußball? Andreas Bausch hat festgestellt, dass dann zwar weiterhin einzelne Fünfer-Anordnungen zu sehen sind, diese Fehlordnungen aber als Linie auftreten. Es bilden sich Narben, wie Bausch die Defektlinien nennt: Fünfer-Anordnungen wechseln sich ab mit Kugeln, die sieben Nachbarn haben. Die Länge der Narben steht dabei im direkten Verhältnis zur Krümmung der Oberfläche – je flacher die Krümmung, desto länger die Narbe.

Grund für diese ungewöhnliche Anordnung ist, dass die Fünfer-Anordnung lokal zu einer großen elastischen Deformation führt – optimal bei stark gekrümmten Oberflächen. Wird die Krümmung aber flacher, ist gar keine so starke Deformation mehr nötig damit die Kugeln sich eng zusammen lagern können. Es kostet sogar sehr viel Energie, die zu starke Deformation der Fünfer-Anordnung wieder etwas abzufedern. Ab einer bestimmten Krümmung ist es daher energetisch günstiger zusätzlich zu der Fünfer-Anordnung weitere Defekte einzuführen: Paare aus Fünf- und Siebenecken. Sie ermöglichen eine enge Bedeckung der Oberfläche bei minimalem Energieaufwand. Der niedrigste kristalline Energiezustand auf einem aufgeblasenen Fußball trägt also Narben.

Beobachtet hat Bausch die Defektlinien in einem sehr einfachen Modelsystem, bestehend aus einer mit winzigen Polymerkugeln stabilisierten Emulsion von Wasser in Öl. Das Wasser bildet kleine kugelförmige Tröpfchen in dem Öl, genauer: in einem Gemisch zweier organischer Lösungsmittel. Die Polymerkugeln – mit gerade mal einem Mikrometer Durchmesser – lagern sich an die Oberfläche der Wassertröpfchen an. Ihre genaue Anordnung können die Forscher dann mit dem Mikroskop und digitaler Bildverarbeitung untersuchen.

„Das Faszinierende ist, dass sie, wenn es lokal fast flach wird, Defektlinien haben, die anfangen und aufhören,“ erläutert der Diplom-Physiker Michael Nikolaides von der TU München, der während seiner Diplomarbeit an diesem System gearbeitet hatte. Ein derartig begrenzter Defekt sei bei einer Ebene undenkbar, da er zuviel Energie koste – und war bisher auch bei den gekrümmten Flächen lediglich postuliert. Die Narbenstruktur könnte überall da eine Rolle spielen, wo leicht gekrümmte Oberflächen vorkommen. So wurden solche Defektlinien bereits in natürlich vorkommenden Systemen beobachtet, aber nicht als optimale Anordnung gedeutet. Etwa in Bakterienwänden, wo die Narben möglicherweise eine wichtige Rolle bei der Zellteilung spielen. Bei Nanotubes und auch bei Fullerenen könnten die Erkenntnisse dazu führen, gezielt neue Strukturen aufzubauen.

Ansprechpartner:

Prof. Dr. Andreas Bausch
Lehrstuhl für Biophysik E22,
Technische Universität München
Tel.: (+49) 089 – 289-12480
Fax: (+49) 089 – 289-12469
E-Mail: abausch@ph.tum.de

Media Contact

Dieter Heinrichsen M.A. idw

Weitere Informationen:

http://www.ph.tum.de/~abausch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Zukunft der Robotik ist soft und taktil

TUD-Startup bringt Robotern das Fühlen bei. Die Robotik hat sich in den letzten Jahrzehnten in beispiellosem Tempo weiterentwickelt. Doch noch immer sind Roboter häufig unflexibel, schwerfällig und zu laut. Eine…

Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein

Perowskit-Halbleiter versprechen hocheffiziente und preisgünstige Solarzellen. Allerdings reagiert das halborganische Material sehr empfindlich auf Temperaturunterschiede, was im Außeneinsatz rasch zu Ermüdungsschäden führen kann. Gibt man jedoch eine dipolare Polymerverbindung zur…

EU-Projekt IntelliMan: Wie Roboter in Zukunft lernen

Entwicklung eines KI-gesteuerten Manipulationssystems für fortschrittliche Roboterdienste. Das Potential von intelligenten, KI-gesteuerten Robotern, die in Krankenhäusern, in der Alten- und Kinderpflege, in Fabriken, in Restaurants, in der Dienstleistungsbranche und im…

Partner & Förderer