Hochleistungs-Spurenanalytik


Exzeptionelle Senkung der Nachweisgrenzen durch aufschlussfreies Feststoffverfahren

»A.M.S.El.« akronymisiert sich der Arbeitskreis für Mikro- und Spurenanalyse der Elemente und Elementspezies der Fachgruppe Analytische Chemie der Gesellschaft Deutscher Chemiker (GDCh). Die Spurenanalytiker spüren winzigste Mengen von Fremdelementen in einer Grundsubstanz, der Matrix auf. Sie tun es keineswegs nur aus theoretischem Interesse, sondern mit praktischem Ziel, zum Beispiel dann, wenn aus besagter Matrix – etwa Silizium – hochsensible Bauelemente hergestellt werden. Hier können bereits winzigste Verunreinigungen die Endprodukte unbrauchbar machen. Innovative Entwicklungen auf dem Gebiet der Spurenanalyse würdigt A.M.S.El. mit einem Forschungspreis – letzthin an den (Ex-)Ulmer Spurenanalytiker Dr. Uwe Schäffer verliehen.

»Entwicklung und Anwendung von direkten spektrometrischen Methoden zur Analyse von High-Tech-Materialien auf Kohlenstoffbasis« heißt der Titel der prämiierten Arbeit. Es ist Schäffers Dissertation, angefertigt in der Sektion Analytik und Höchstreinigung der Universität Ulm, seinerzeit noch geleitet von Prof. Dr. Viliam Krivan (inzwischen emeritiert). Das Thema ist die Entwicklung neuer spurenanalytischer Analysemethoden auf der Grundlage der elektrothermischen Atomabsorptionsspektroskopie (ETAAS) und der Atomemissionsspektroskopie mit induktiv gekoppeltem Plasma (ICP-AES).

Blindwert-Verwehungen

ETAAS und ICP-AES sind gegenwärtig, zusammen mit der ICP-MS, der Massenspektrometrie mit induktiv gekoppeltem Plasma, die beiden wichtigsten Routinemethoden der Spurenanalytik. Allerdings war die Analyse von Festproben bisher in der Regel problematisch. Bei deren Aufschluss, der notwendig vorangehen muss, gelangen gegebenenfalls um einige Größenordnungen mehr Fremdelementmengen in die Probe, als sich ursprünglich darin befinden. In den »Verwehungen« dieser Blindwerteinträge sind die eigentlichen Verunreinigungen kaum mehr zu bestimmen. Geht es vielleicht auch aufschlussfrei? fragten sich die Ulmer Spurenanalytiker – und in ihrem Gefolge inzwischen zahlreiche Arbeitsgruppen. Die Frage stellt sich um so dringender, je schwerer die Feststoffe aufschließbar und je reiner sie sind. Die auf Kohlenstoff basierenden Werkstoffe (Graphit, Siliziumkarbid, Polyamide) gehören zu den besonders widerständigen. Gerade sie sind aber von besonderem technischem Interesse.

Eines der ersten Ziele Schäffers bestand darin, für die ICP-AES ein auf der elektrothermischen Verdampfung (ETV) der Analyte basierendes System zu entwickeln, das es erlauben sollte, feste Proben automatisch in den Verdampfer ein- und die Analyte möglichst verlustfrei in das Plasma zu überführen. So entwarf er, unterstützt vom Ingenieurbüro Schuierer aus Ismaning bei München, eine kompakte, vollautomatisch gesteuerte Anlage, bestehend aus einem Graphitrohr als Verdampfer und dem automatischen Probengeber. Im Betriebsablauf ist der Auftrag der Proben auf die Plattformen der einzige manuell auszuführende Schritt.

Radiotracer orten und quantifizieren Transportverluste

Über die tatsächlich erreichte Transporteffizienz, die anhand spektrometrischer Messungen nicht zuverlässig ermittelt werden kann, gab es bisher keine ausreichenden Daten. Schäffer nahm deshalb die Radiotracertechnik zu Hilfe: mittels Einsatzes radioaktiv markierter »Kontrollspuren« untersuchte und optimierte er das ETV-System durch präzise Lokalisation und Quantifizierung der Analytverluste in den einzelnen Sektoren des Transportweges. Dabei zeigte sich, dass die größten Verluste an der Schnittstelle zwischen Verdampfer und Probengeber auftreten. Also konstruierte Schäffer ein neues Interface, in dem die durch Adsorption der gasförmigen Analyte auftretenden Verluste durch Zufuhr eines »Bypass-Gases« minimiert werden. Das entlang der kalten Leitungswände fließende Gas verzögert den Kontakt der gasförmigen Analyte mit den Wänden und unterstützt die Bildung von analythaltigen Aerosolen.

Das so verbesserte ETV-System erprobten die Spurenanalytiker anschließend bei der simultanen Bestimmung von 25 Spurenverunreinigungen in Graphit, Siliziumkarbid und Polyamid. Graphit zum Beispiel lässt sich mit Säuren auch bei höheren Temperaturen und Drücken nicht aufschließen, der Aufschluss von Siliziumkarbid dauert 12 Stunden. Mit der ETV-Technik dagegen nimmt die gesamte Analyse nur wenige Minuten in Anspruch. Vor allem aber werden die Nachweisgrenzen gegenüber dem herkömmlichen Aufschlussverfahren um bis zum Faktor 300 (!) gesenkt. Auch bei der elektrothermischen Atomabsorptionsspektroskopie führte der direkte Eintrag der festen Proben in den Atomisator zu vergleichbaren Erfolgen. Für die meisten Elemente sowohl bei Graphit als auch bei Siliziumkarbid sind die Nachweisgrenzen der Feststoff-ETAAS nach Schäffers Untersuchungen die niedrigsten aller derzeit in Frage kommenden Methoden. Sie reichen hinunter in den 0,1-ppb(parts per Billion)-Bereich.

Media Contact

Peter Pietschmann idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ultraleichte selbstglättende Spiegel

…erhöhen die Effizient hochmoderner Teleskope. Schon immer faszinierte den Menschen der Blick in den Sternenhimmmel und nicht minder faszinierend ist es, die Erde aus dem Weltraum zu betrachten. Möglich ist…

Überraschende Umkehr in Quantensystemen

Forschende haben topologisches Pumpen in einem künstlichen Festkörper aus kalten Atomen untersucht. Die Atome wurden mit Laserstrahlen gefangen. Überraschenderweise kam es zu einer plötzlichen Umkehr der Atome an einer Wand…

Magnetisch durch eine Prise Wasserstoff

Neue Idee, um die Eigenschaften ultradünner Materialien zu verbessern. Magnetische zweidimensionale Schichten, die aus einer oder wenigen Atomlagen bestehen, sind erst seit kurzem bekannt und versprechen interessante Anwendungen, zum Beispiel…

Partner & Förderer