Aus Mitochondrien werden Reparaturwerkstätten des Körpers

„Wir kennen eine ganze Reihe von Erkrankungen, die durch ein kaputtes Genom der Mitochondrien entsteht“, erklärt Prof. Dr. Peter Seibel. Betroffen sind dabei Bereiche des menschlichen Körpers, in denen Zellen vorherrschen, die auf besonders viel Energie angewiesen sind, etwa in Muskeln, dem Herzen oder auch dem Gehirn.

Bei den Untersuchungen nutzen die Forscher den Fakt, dass die so genannten Mitochondrien – die im Zellplasma vorliegen – als Kraftwerke der Zellen fungieren und über eigene DNA verfügen. Diese mitochondriale DNA wird ausschließlich über die Eizelle vererbt und hat für die Wissenschaftler einen wesentlichen Vorteil: „Das Genom in den Mitochondrien ist sehr übersichtlich, da es lediglich 16.569 Basenpaare groß ist“, erläutert der Chemiker.

Um Zellen zur Untersuchung und Behandlung von neuro-muskulären Erkrankungen zu gewinnen, haben die Wissenschaftler um Prof. Seibel jetzt ein relativ einfaches und sehr zeitsparendes Verfahren entwickelt. Sie geben ein aus einem Bakterium gewonnenes Enzym als Schlüssel in die Mitochondrien. Das Enzym dringt bis in die Matrix der Mitochondrien vor und erkennt dort das Genom. Es spaltet oder schneidet das Genom mehrfach auf, die verbleibenden Fragmente werden über endogene Nukleasen abgebaut. Das Enzym verbleibt nur wenige Tage in den Mitochondrien der Zelle. Das Ergebnis: „Wir erhalten eine Zelle, die keinerlei mitochondriale DNA mehr enthält, sowohl die 'gute' wie die 'schlechte' DNA werden zerstört.“

Wenn das Genom erfolgreich entfernt ist, können die Forscher anschließend neue Mitochondrien einsetzen, deren Wirkung dort jeweils erwünscht ist. „Vereinfacht ausgedrückt kann man sagen, dass wir die Aufgaben der Mitochondrien um neue Reparaturwerkstätten des Körpers erweitern“, veranschaulicht Seibel. Dafür sind die Mitochondrien besonders geeignet, von denen schätzungsweise etwa 50.000 Stück in jeder Eizelle zu finden sind. „Wenn man ein Gen direkt in den Zellkern einbringt, kann man nicht mit Gewissheit sagen, wo es ankert und es können sich Tumoren bilden“, so der Chemiker. Ein großer Vorteil für die Mitochondrien, denn hier ist dieses gefährliche Verhalten unbekannt.

Einzelheiten, welche Einsatzgebiete und -möglichkeiten es geben wird, lassen sich nur erahnen. Wenn Seibel jedoch von Alzheimer über Parkinson bis hin zu Diabetes, die auf DNA-Mutationen zurückgeführt werden kann, spricht, lässt sich zumindest grob erahnen, dass es ein weites Feld ist, das mit der neuen Methode bearbeitet und erschlossen werden kann. Jörg Aberger

Weitere Informationen:
Prof. Dr. Peter Seibel
Telefon: (0341) 97-31370
E-Mail: [email protected]

Ansprechpartner für Medien

Dr. Bärbel Adams Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Besser kleben im Leichtbau

Projekt GOHybrid optimiert Hybridverbindungen Leichtbau ist in der Mobilitätsbranche essentiell. Im Zuge der Mischbauweise mit Leichtmetallen und Faser-Kunststoff-Verbunden rücken hybride Klebverbindungen in den Fokus. Aufgrund der unterschiedlichen Wärmeausdehnungen der Materialien…

Benchmark für Einzelelektronenschaltkreise

Neues Analyseverfahren für eine abstrakte und universelle Beschreibung der Genauigkeit von Quantenschaltkreisen (Gemeinsame Presseinformation mit der Universität Lettland) Die Manipulation einzelner Elektronen mit dem Ziel, Quanteneffekte nutzbar zu machen, verspricht…

Solarer Wasserstoff: Photoanoden aus α-SnWO4 versprechen hohe Wirkungsgrade

Photoanoden aus Metalloxiden gelten als praktikable Lösung für die Erzeugung von Wasserstoff mit Sonnenlicht. So besitzt α-SnWO4 optimale elektronische Eigenschaften für die photoelektrochemische Wasserspaltung, korrodiert jedoch rasch. Schutzschichten aus Nickeloxid…

Partner & Förderer