MDC-Forscher rekonstruieren springendes Gen

In Pflanzen, Tieren und auch im Menschen sind sie zu finden – inaktive Überreste springender Gene, sogenannte Transposons. Forscher versuchen aus diesen Resten aktive Transposons zu entwickeln, um mit diesen Werkzeugen die Funktion von Genen zu entschlüsseln. Jetzt ist es Forschern am Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch gelungen, das erste aktive Transposon der Familie der Harbinger-Transposons (Harbinger – engl. für Vorbote) zu konstruieren. Das künstliche Transposon von Dr. Ludivine Sinzelle, Dr. Zsuzsanna Izsvák und Dr. Zoltán Ivics ist im Zelllabor auch in menschlichen Zellen aktiv und kann, so hoffen die Forscher, Aufschluss über die Rolle menschlicher Gene geben. Ihre Ergebnisse sind jetzt online im den Proceedings of the National Academy of Sciences (PNAS)* (10.1073/pnas.0707746105) veröffentlicht worden.

Transposons machen rund die Hälfte des menschlichen Genoms aus. „Sie sind molekulare Parasiten, ähnlich wie Flöhe, nur dass sie im Genom des Wirtes und nicht auf dessen Rücken zu finden sind“, erklärt Dr. Zoltán Ivics. Sie springen, bewegen und vermehren sich durch den Wirt. Ohne ihn können sie nicht überleben. In den meisten Fällen erfüllen Transposons keine Funktion im menschlichen Genom. Doch nicht alle sind überflüssig. „Ungefähr hundert aktive Gene, darunter einige des Immunsystem, lassen sich auf Transposons zurückführen“, führt Dr. Ivics weiter aus.

Um ein aktives Transposon zu konstruieren, verglich das Team von Dr. Ivics die DNA verschiedener, inaktiver Überreste der Harbinger-Transposons, einer der größten Familien von Transposons, und entwickelten aus ihren Ergebnissen ein künstliches, springendes Gen. „Wir hatten sehr viel Glück“, so Dr. Ivics, „gleich der erste Versuch war erfolgreich.“

Neues Werkzeug für die Grundlagenforschung
Im Zelllabor schleusten die MDC-Forscher das Transposon durch ein Genshuttle in menschliche Zellen. Dort schneidet sich das künstliche Transposon selbstständig aus seinem Transportvehikel aus und baut sich in das Genom der Zelle ein. Springt das Transposon dabei in ein wichtiges Gen und deaktiviert es, ist es möglich, dass wichtige Abläufe in der Zelle gestört sind. Daraus können die Forscher auf die Funktion des Gens schließen.

Aber auch neue Gene sind im Laufe der Evolution durch Transposons entstanden. So hat die Forschungsgruppe von Dr. Ivics zwei neue Verwandte des Harbinger-Transposons durch computergestützte Genanalysen entdeckt. Welche Rolle diese Gene im menschlichen Körper spielen, will Dr. Ivics jetzt in einem neuen Projekt untersuchen.

Langfristig hoffen die Wissenschaftler solche Transposons auch in der Gentherapie einsetzen zu können. Eine intakte Kopie eines Gens könnte mit Hilfe des Transposons in das Genom eines Patienten integriert werden, um so einen Gendefekt beheben. „Doch bis dies möglich ist, müssen wir noch viel tun“, gibt Dr. Ivics zu bedenken. „Das neue Gen soll ja nicht irgendwo hinspringen.“

*Transposition of a Reconstructed Harbinger Element in Human Cells and Functional Homology with Two Transposon-derived Cellular Genes

Ludivine Sinzelle1, Vladimir V. Kapitonov,2, Dawid P. Grzela1, Tobias Jursch1, Jerzy Jurka2, Zsuzsanna Izsvák1,3 and Zoltán Ivics1

1Max-Delbrueck-Center For Molecular Medicine, Berlin, Germany;
2Genetic Information Research Institute, Mountain View, California, USA
3Institut of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 – 38 96
Fax: +49 (0) 30 94 06 – 38 33
e-mail: presse@mdc-berlin.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Theoretische Physik: Modellierung zeigt, welche Quantensysteme sich für Quantensimulationen eignen

Eine gemeinsame Forschungsgruppe um Prof. Jens Eisert von der Freien Universität Berlin und des Helmholtz-Zentrum Berlin (HZB) hat einen Weg aufgezeigt, um die quantenphysikalischen Eigenschaften komplexer Festkörpersysteme zu simulieren. Und…

Rotation eines Moleküls als „innere Uhr“

Mit einer neuen Methode haben Physiker des Heidelberger Max-Planck-Instituts für Kernphysik die ultraschnelle Fragmentation von Wasserstoffmolekülen in intensiven Laserfeldern detailliert untersucht. Dabei nutzten sie die durch einen Laserpuls angestoßene Rotation…

Auf dem Weg zur fischfreundlichen Wasserkraft

In dem europaweiten Projekt „FIThydro“ unter Leitung der Technischen Universität München (TUM) haben Forscherinnen und Forscher in Zusammenarbeit mit Industriepartnern bestehende Wasserkraftwerke untersucht. Diese Ergebnisse nutzten sie, um neue Methoden…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close