Was das Blut gerinnen lässt

Zwei bisher kaum untersuchte Proteine spielen bei der Blutgerinnung eine entscheidende Rolle und könnten damit zu Zielmolekülen für die Entwicklung von Medikamenten gegen Herzinfarkt oder Schlaganfall werden.

Die Ergebnisse aus einer Forschungskooperation mit Kollegen der Universität Würzburg haben Wissenschaftler um Reinhard Fässler in den aktuellen Ausgaben der Fachzeitschriften „The Journal of Experimental Medicine“ und „Nature Medicine“ veröffentlicht.

Wie wird ein verletztes Blutgefäß verschlossen? Oberflächlich betrachtet mit einem Pflaster. Tatsächlich führt jedoch erst eine Gerinnungskaskade in den verletzten Gefäßen dazu, dass Blutplättchen, die sogenannten Thrombozyten, zu einem Blutpfropf verklumpen, der schließlich die Blutung stillt. Viele Details, die zur Blutstillung führen, sind bisher allerdings noch völlig unbekannt. Dabei wäre ein tiefes Verständnis dieser Prozesse nötig, beispielsweise um Erkrankungen wie Herzinfarkt oder Schlaganfall verstehen und wirksam behandeln zu können. Ursache hierfür ist nämlich ein Blutpfropf, der im erkrankten Gefäß entsteht und dort zu Durchblutungsstörungen oder zum vollständigen Verschluss des Gefäßes führt.

Seit einiger Zeit untersucht ein Team von Wissenschaftlern der Abteilung für Molekulare Medizin am Max-Planck-Institut für Biochemie in Martinsried Proteine auf der Oberfläche von Blutplättchen, die sogenannten Integrine. Diese werden bei einem Gefäßdefekt aktiviert und vermitteln dann zum einen das Anheften der Blutplättchen an die geschädigte Gefäßwand und zum anderen ihre Vernetzung untereinander. In Kooperation mit der Gruppe von Bernhard Nieswandt von der Universität Würzburg haben die Max-Planck-Forscher Markus Moser und Siegfried Ussar nun jene Proteine untersucht, die für die Aktivierung von Integrinen auf Blutplättchen wichtig sind.

Dabei sind die Wissenschaftler auf zwei bisher nicht gut charakterisierte Proteine gestoßen – Talin-1 und Kindlin-3 -, die Integrine offenbar direkt aktivieren. Verhinderten die Forscher die Bildung von Talin-1 bei Mäusen, so wurden auch die Integrine der Blutplättchen nicht aktiviert. Die Tiere konnten keine Blutpfropfen ausbilden, Blutungen in verletzten Gefäßen wurden nicht gestillt. Bei Mäusen, denen das Protein Kindlin-3 fehlt, kam es in verletzten Gefäßen ebenfalls nicht zur Verklumpung. Auch hier wurden die dazu notwendigen Integrine nicht aktiviert.

Die Wissenschaftler haben auch herausgefunden, wie die Aktivierung der Integrine über Talin-1 und Kindlin-3 funktioniert: „Die Proteine verändern die Struktur der Integrine auf der Oberfläche von Blutplättchen und zwar so, dass sie an elastische Fasern binden können, die die Plättchen dann miteinander vernetzen“, erklärt Markus Moser. So entsteht ein Blutpfropf und die Blutungen stoppen innerhalb kürzester Zeit.

Der umgekehrte Weg ist nun für die klinische Anwendung denkbar: „Eine Blockade der Proteine würde dazu führen, dass gefährliche Verklumpungen in erkrankten Gefäßen aufgelöst werden oder erst gar nicht entstehen können“, so der Biochemiker. Das macht Talin-1 und Kindlin-3 zu möglichen Angriffspunkten für die Vorbeugung und Therapie von Herzinfarkt oder Schlaganfall. Besonders Kindlin-3 ist für die Forscher interessant: das Protein kommt nämlich ausschließlich in Blutzellen vor; Nebenwirkungen in anderen Zellen können damit ausgeschlossen werden.

Originalveröffentlichungen:

„Loss of talin1 in platelets abrogates integrin activation, platelet aggregation and thrombus formation in vitro and in vivo“, Bernhard Nieswandt, Markus Moser, Irina Pleines, David Varga-Szabo, Sue Monkley, David Critchley, Reinhard Fässler, 2007, Journal of Experimental Medicine.

„Kindlin-3 is essential for integrin activation and platelet aggregation“, Markus Moser, Bernhard Nieswandt, Siegfried Ussar, Miroslava Pozgajova, and Reinhard Fässler, 2008, Nature Medicine, February 17, 2008. Advanced online publication doi:10.1038/nm1722.

Weitere Informationen erhalten Sie von:

Dr. Markus Moser
Abteilung Molekulare Medizin
moser@biochem.mpg.de
und
Eva-Maria Diehl
Öffentlichkeitsarbeit
diehl@biochem.mpg.de
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel.: +49 (89) 8578 2824

Ansprechpartner für Medien

Eva-Maria Diehl Max-Planck-Gesellschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Herz-Kreislauf-Erkrankungen: Neues Computermodell verbessert Therapie

Mithilfe mathematischer Bildverarbeitung haben Wissenschafter der Forschungskooperation BioTechMed-Graz einen Weg gefunden, digitale Zwillinge von menschlichen Herzen zu erstellen. Die Methode eröffnet völlig neue Möglichkeiten in der klinischen Diagnostik. Obwohl die…

Teamarbeit im Molekül

Chemiker der Universität Jena erschließen Synergieeffekt von Gallium. Sie haben eine Verbindung hergestellt, die durch zwei Gallium-Atome in der Lage ist, die Bindung zwischen Fluor und Kohlenstoff zu spalten. Gemeinsam…

Kristallstrukturen in Super-Zeitlupe

Göttinger Physiker filmen Phasenübergang mit extrem hoher Auflösung Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern. Dieses Prinzip ermöglicht heute weitverbreitete Technologien wie die wiederbeschreibbare DVD….

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen