Ulmer Wissenschaftler liefern Grundlagen zur Brennstoffzellen-Forschung

Warum aber die Reaktion des Wasserstoffs so stark variiere, sei bisher weitgehend unverstanden, sagt Professor Wolfgang Schmickler vom Institut für Theoretische Chemie der Universität Ulm. „Eigentlich ist es eines der ältesten Themen in der Elektrochemie, ein seit rund 100 Jahren existentes und ungelöstes Problem.“

Jetzt hat er nach eigener Aussage gemeinsam mit seiner Kollegin Dr. Elizabeth Santos die erste Theorie dazu entwickelt und durch Experimente belegt. Ihre Erkenntnisse, fraglos auch hoch interessante Grundlagen für die Brennstoffzellen-Forschung, haben die Ulmer Wissenschaftler kürzlich in der angesehenen Zeitschrift „Angewandte Chemie“ veröffentlicht. „Mit einer enormen Resonanz“, freut sich Schmickler, dokumentiert nicht zuletzt durch zahlreiche Einladungen zu Vorträgen im In- und Ausland.

Für ihn nicht überraschend. Schließlich werde weltweit auf Hochtouren an Verbesserungen der Wasserstoff-Brennstoffzelle zur Energieversorgung geforscht. Überdies seien er und seine aus Argentinien stammende Kollegin Santos seit Jahren in verschiedene nationale wie internationale Forschungsnetzwerke und Projekte eingebunden, unter anderem gefördert von der Europäischen Union, der Deutschen Forschungsgemeinschaft und vom argentinischen Staat. Im Blickpunkt dabei insbesondere: Wasserstoff als zentraler Energieträger, die Entwicklung eines effizienteren Katalysators für die Wasserstoff-Gewinnung und ein besserer Wirkungsgrad der daraus gewonnenen Energie. Untersuchen wollen Schmickler und Santos in diesem Zusammenhang unter anderem auch den Einfluss von Nanostrukturen auf Elektroden. Mit unterschiedlichsten Materialien versteht sich, zum Beispiel einer einatomigen Schicht Palladium auf Gold.

Darüber hinaus wollen sich die beiden auf Physikalische Chemie spezialisierten Ulmer Wissenschaftler künftig einem nicht minder ehrgeizigen Vorhaben widmen: „Wir wollen jetzt die Elektrokatalyse von der Sauerstoff-Seite her angehen“, sagt Schmickler und vermutet: „Das ist noch schwieriger.“ Auch ihre jetzt vorgelegte Arbeit freilich war das Ergebnis langjähriger Überlegungen, Vermutungen, Berechnungen und Experimente, zum Teil unterstützt von weiteren Wissenschaftlern der Universitäten Ulm und Cordoba/Argentinien.

Die Frage also, wie ein Metall die Geschwindigkeit einer elektrochemischen Reaktion des Wasserstoffs beeinflusst. Abhängig vom Elektrodenmaterial mit enormen Unterschieden nämlich. „Die Geschwindigkeit verändert sich um bis zu sechs Zehner-Potenzen“, macht Professor Schmickler deutlich und beschreibt einen bildhaften Vergleich: „Bei Blei verläuft die Reaktion im Ameisen-Tempo, Platin, aus gutem Grund bereits in herkömmlichen Brennstoffzellen verwendet, ermöglicht Jet-Geschwindigkeit.“ Aber warum?

Schmicklers und Santos' Modell zufolge erklärt sich dies durch die Aktivierungsenergie für die Anhebung der Wasserstoff-Elektronen zum so genannten Fermi-Niveau, dem jedem Metall eigenen Energie-Niveau mit folgender Eigenschaft: Alle Niveaus mit Energien unterhalb des Fermi-Niveaus sind mit Elektronen besetzt, die Niveaus darüber sind leer. Zu Beginn der Reaktion haben die Elektronen im Wasserstoffmolekül eine Energie unterhalb des Fermi-Niveaus. Damit die Reaktion stattfinden kann, müssen sie zum Fermi-Niveau angehoben werden, so dass sie auf ein leeres Niveau im Metall übergehen können.

Gleichzeitig bricht die Bindung im Molekül und es entstehen zwei positiv geladene Wasserstoff-Ionen, die im Elektrolyten weiter zu Wasser reagieren.

Je höher nun die Aktivierungsenergie, desto langsamer die Reaktion. Die Aktivierungsenergie kann aber erheblich herabgesetzt werden, wenn das Wasserstoff-Molekül stark mit gewissen Metallorbitalen, so genannten d-Bändern, am Fermi-Niveau wechselwirkt. Professor Wolfgang Schmickler: „Anschaulich ausgedrückt nutzt das System einen Effekt aus, den jeder gute Hochspringer kennt: Er windet seinen Körper so um die Latte, dass der Schwerpunkt seines Körpers unter ihr durchgeht, während sein Körper sie oberhalb passiert.“

Die Lage der d-Bänder, ihre Struktur und die Stärke ihrer Wechselwirkung mit Wasserstoff schwanke sehr stark von Metall zu Metall, so Schmickler weiter. Dies erkläre die große Variation in der Reaktionsgeschwindigkeit. Nicht nur für den Ulmer Wissenschaftler ein wichtiger Aspekt: „Ein Vergleich er von uns berechneten Geschwindigkeiten mit experimentellen Daten zeigt eine gute Übereinstimmung.“

Weitere Informationen: Prof. Dr. Wolfgang Schmickler, Tel. 0731/50-31340

Ansprechpartner für Medien

Willi Baur idw

Weitere Informationen:

http://www.uni-ulm.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Diamanten brauchen Spannung

Diamanten faszinieren – nicht nur als Schmucksteine mit brillanten Farben, sondern auch wegen der extremen Härte des Materials. Wie genau diese besondere Variante des Kohlenstoffs tief in der Erde unter…

Die Entstehung erdähnlicher Planeten unter der Lupe

Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler des Max-Planck-Instituts für Astronomie in Heidelberg ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe…

Getreidelagerung: Naturstoffe wirksamer als chemische Insektizide

Senckenberg-Wissenschaftler Thomas Schmitt hat die Wirksamkeit von Kieselerde und einem parasitischen Pilz als Schutz vor Schadinsekten an Getreide im Vergleich zu einem chemischen Insektizid untersucht. Gemeinsam mit Kollegen aus Pakistan…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen