Baukasten für Designer-Proteine

Schematische Darstellung eines genetisch gezielt veränderten Proteins mit Glykanstruktur Grafik: KIT

„Proteine sind für alle lebenden Organismen wichtige Bausteine“, sagt Stefan Bräse, Professor am Institut für Organische Chemie und Direktor am Institut für Toxikologie und Genetik des KIT. „Zellen, Muskeln, Organe enthalten Proteine. Komplexe Proteinsysteme (de-)codieren die genetische Information der DNA, um wiederum weitere Proteine mit unterschiedlichsten Aufgaben zu erzeugen.“

Für die Anwendung in der Forschung und Medizin kommen häufig bio-technologisch hergestellte Eiweiße zum Einsatz, deren Eigenschaften im Vergleich zur Ursprungsform verändert und auf das neue System angepasst sind: Diese rekombinanten Proteine werden mithilfe von gentechnisch gezielt veränderten DNA-Viren modifiziert. Die neue Struktur trägt die angestrebte Zielfunktion.

Lange fand als Expressionsmedium, sprich als Maschinerie, um neuartige Proteine herzustellen, das Darmbakterium Escherichia coli (E.coli) Anwendung. „E.coli ist ein sehr einfacher Organismus“, erklärt Bräse. Andererseits habe E.coli auch einige Nachteile bezüglich der Biosynthese von Designer-Proteinen.

Deshalb haben sich in den letzten Jahren Insektenzellen, sogenannte Sf21-Zellen, als geeignetes Expressionssystem bewährt, zusammen mit dem „MultiBac-System“. Dieses System nutzt einen Transfer-Vektor, also eine Art „Genfähre“, welche die benötigten Informationen zum Aufbau des rekombinant modifizierten Proteins enthält.

„Durch eine Kombination des MultiBac-Systems mit seitenspezifischen Gen-Engineering-Methoden, dem ‚MultiBacTAG‘, können wir nahezu beliebige Proteine mit integrierten Zielfunktionalitäten in großen Mengen und mit hoher Qualität herstellen“, sagt Dr. Edward Lemke, Gruppenleiter für Hochauflösende Untersuchungen am Europäischen Molekularbiologischen Labor (EMBL) in Heidelberg. „Das System benötigt dafür nur einige Wochen. Wir haben es direkt für unsere Glykanstrukturen genutzt“, ergänzt Bräse.

Mit dieser innovativen Methode gelang es den internationalen Forschungspartnern ortsspezifisch unnatürliche Aminosäuren in das Zielprotein einzuführen. Ein neu designtes, orthogonales Enzym, das tRNA/ tRNA-Synthetase-Paar, erkennt die unnatürlichen Aminosäuren und kann sie bequem in die gewünschte Zielstruktur einbauen.

Durch die Kombination des MultiBac-Systems mit dem orthogonalem tRNA/ tRNA-Synthetase-Paar ist es Lemke und Bräse mit ihren Gruppen gelungen, Proteinkomplexe mit Zellkerne in Insektenzellen herzustellen, die unnatürliche Aminosäuren tragen und somit eine Vielzahl von Anwendungen erlauben.

Die Technologie zur Erweiterung des genetischen Codes ist für die heutige Medizin und Biotechnologie unverzichtbar. „MultiBacTAG ist nutzerfreundlich und leicht nachvollziehbar. Da die Komponenten der Gencode-Veränderung in die Struktur von MultiBacTAG eingesetzt sind, können Nutzer unsere Erweiterung ohne vorherige Erfahrung oder Kenntnisse verwenden“, sagt Bräse.

In Tests konnten die chemischen Biologen an Insekten- und Säugerzellen die Anwendung für eine Vielfalt von Proteinen und Proteinkomplexen aufzeigen. So konnten sie beispielsweise Herceptin herstellen, ein Protein, das als Antikörper bei Brustkrebserkrankungen verwendet wird. „Wir gehen davon aus, dass MultiBacTAG eine breite Palette von Möglichkeiten für das individuelle Proteindesign in biotechnologischen und pharmazeutischen Anwendungen ermöglicht“, fasst Bräse zusammen. „Es könnte vor allem in der Erforschung von Proteinkomplexen und deren funktionellen Wechselwirkungen sehr nützlich sein.“

Das Paper „Genetic code expansion for multiprotein complex engineering” gibt es unter:
http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4032.html

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4032.html

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Genetisches Material in Taschen verpacken

Internationales Forscherteam entdeckt, wie der Zellkern aktive und inaktive DNA strukturiert. Alles Leben beginnt mit einer Zelle. Während der Entwicklung eines Organismus teilen sich die Zellen und spezialisieren sich, doch…

Schnüffeln für die Wissenschaft

Artenspürhunde liefern wichtige Daten für Forschung und Naturschutz Die Listen der bedrohten Tiere und Pflanzen der Erde werden immer länger. Doch um diesen Trend stoppen zu können, fehlt es immer…

Ausgestorbenes Atom lüftet Geheimnisse des Sonnensystems

Anhand des ausgestorbenen Atoms Niob-92 konnten ETH-Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor. Die Studie kommt auch zum Schluss, dass in der Geburtsumgebung unserer Sonne Supernova-Explosionen stattgefunden haben…

Partner & Förderer