Atomarer Fingerabdruck identifiziert Emissionsquellen von Uran

Am Vienna Environmental Research Accelerator wurden die Spurenkonzentrationen von 233U und 236U nachgewiesen (im Bild K. Hain mit Masterstudent M. Kern). © M. Martschini, University of Vienna

Die Weltmeere enthalten von Natur aus Konzentrationen des Elements Uran (U) im Bereich von mehreren Mikrogramm pro Kilogramm Wasser. Aufgrund seiner gelösten chemischen Form wird Uran nicht durch Sedimentation aus dem Wasser entfernt, sondern zusammen mit den entsprechenden Wassermassen transportiert und vermischt.

Diese chemischen Eigenschaften erlauben es, Wassertransportprozesse in Meeresströmungen nachzuvollziehen, welche einen starken Einfluss auf unser Klima haben.

Uran als ozeanographischer Indikator

Dies gilt auch für sogenannte anthropogene Uranisotope, die durch menschliche Aktivitäten, wie z.B. nukleare Wiederaufbereitungsanlagen, Reaktorunfälle oder atmosphärische Kernwaffentests freigesetzt wurden.

Ein Vorteil der anthropogenen Uranisotope für die Verfolgung von Meeresströmungen ist ihre hohe Empfindlichkeit gegenüber kleinen, kürzlich erfolgten Uran-Einträgen in das große Reservoir von natürlichem Uran. Durch die Beobachtung der Ausbreitung der Spurennuklide vom Ursprung der Emission können Wissenschafter*innen auf den Wassertransport in den angrenzenden Meeren schließen.

Isotopenphysiker*innen an der Universität Wien haben bereits vor einigen Jahren federführend die Analyse des anthropogenen Spurenisotops 236U begonnen, welches zunehmend als ozeanographischer Tracer Anwendung findet.

In Systemen, die von mehreren Kontaminationsquellen betroffen sind, wie z.B. dem Arktischen Ozean, ist ein einzelnes Isotop für die Verfolgung der Meeresströmungen jedoch nicht ausreichend, da zu wenig über die Emissionsgeschichte der verschiedenen Quellen bekannt ist.

233U/236U – der neue Isotopen-Fingerabdruck

„Wir suchten also nach einem zweiten anthropogenen Uranisotop, das in Kernwaffen, aber kaum in konventionellen Kernkraftwerken produziert wird. Aus kernphysikalischer Sicht erschien uns 233U ein vielversprechender Kandidat zu sein“, erklärt Peter Steier, einer der Initiatoren der Studie.

Den Wissenschafter*innen gelang es, die winzigen Mengen von 233U und 236U mittels Beschleuniger-Massenspektrometrie (AMS) am Vienna Environmental Research Accelerator (VERA) zu analysieren. Die von internationalen Kooperationspartnern zur Verfügung gestellten Proben umfassten einen Korallen-Bohrkern aus dem Pazifik, einen Torfmoor-Kern aus dem Schwarzwald sowie Proben aus der Irischen See und der Ostsee. Der Nachweis der extrem niedrigen Konzentrationen von 233U (z.B. 1 Femtogramm pro Gramm Koralle) wurde erst nach einer umfangreichen Erweiterung der VERA-Anlage möglich.

Die Hypothese der Physiker*innen bestätigte sich: Sie fanden in Proben aus der Irischen See, die bekanntermaßen stark von Einleitungen der Wiederaufbereitungsanlage Sellafield betroffen ist, ein zehnmal niedrigeres 233U/236U Verhältnis als in den Proben aus dem deutschen Torfmoor, in dem sich die globalen Auswirkungen von Waffentests akkumuliert hatten. Aus den Daten des Korallen- und des Torfmoorkerns konnte sogar auf verschiedene Phasen der atmosphärischen Kernwaffentests geschlossen werden.

Neue Erkenntnisse über den Kernwaffen-Fallout

Die Autor*innen erklären diese Beobachtung damit, dass bedeutende Mengen des 233Uran-Isotops entweder durch thermonukleare Waffen freigesetzt wurden, in denen es durch schnellen Neutroneneinfang in hochangereichertem Uran erzeugt wird, oder durch die Explosion von Waffen mit geringer Effizienz, in denen 233U direkt als Brennstoff verwendet wurde.

„Die experimentellen Daten zeigen, dass die bisher bekannten Beiträge zum globalen Waffen-Fallout das 233Uran-Budget im Moor nicht erklären können. Dies deutet auf einen Beitrag der einzig bekannten 233U-Bombe hin, welche auf dem Testgelände in Nevada gezündet wurde“, führt Erstautorin Karin Hain von der Universität Wien aus.

Publikation in Nature Communications:
„233U/236U signature allows to distinguish environmental emissions of civil nuclear industry from weapons fallout“, Karin Hain et al, 2020 (open access)
DOI: 10.1038/s41467-020-15008-2

Dr. Karin Hain
Fakultät für Physik
Universität Wien
1090 Wien, Währingerstraße 17
T +43-1-4277-51 711
M +43-681-20308475
karin.hain@univie.ac.at

Media Contact

Stephan Brodicky Universität Wien

Weitere Informationen:

http://www.univie.ac.at/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Viele Fragen und endlich eine Antwort

Zwei Physiker der Uni Siegen erhalten gemeinsam mit einem Kollegen aus China für eine wegweisende Arbeit den Paul-Ehrenfest-Preis. Mit dem Preis wird jedes Jahr die weltweit beste Publikation im Bereich…

Ein neues Modell für mikromechanische Sensoren

Die Eigenschaften von Flüssigkeiten oder Gasen lassen sich mit winzigen schwingenden Plättchen messen. An der TU Wien entwickelte man dafür nun eine Berechnungsmethode. Mikromechanische Sensoren verbinden zwei verschiedene Welten miteinander:…

Digitale ICTM Conference 2022

Klimaziele im Turbomaschinenbau durch Digitalisierung erreichen. Hersteller und Zulieferer von Triebwerken und stationären Turbomaschinen haben erkannt, dass sich die vorrangigen Ziele der Ressourcenschonung und Senkung von Emissionen nur dann noch…

Partner & Förderer