Alles relativ: Wie Fliegen die Welt sehen

Das Fliegenhirn verwendet einen einfachen, aber effektiven Algorithmus, um Bewegungen unter verschiedenen Kontrastbedingungen zu berechnen. (c) MPI für Neurobiologie / Kuhl

Ein Fliegenhirn besitzt rund 100.000 Nervenzellen, wovon zirka 25.000 Zellen am Bewegungssehen beteiligt sind. Im Vergleich zu Wirbeltiergehirnen ist das überschaubar, doch trotzdem gibt es viele Parallelen zwischen dem Sehsystem von Fliegen und zum Beispiel Mäusen. Der Vorteil der Fliege ist jedoch, dass Neurobiologen das System Zelle für Zelle entschlüsseln können.

Doch worauf reagieren einzelne Nervenzellen im Fliegenhirn? Um das zu untersuchen haben Forscher aus der Abteilung von Alexander Borst am Max-Planck-Institut für Neurobiologie ein Panoramakino für Fruchtfliegen gebaut.

Während hier „Filme“ laufen, nehmen die Neurobiologen die Aktivität der Nervenzellen im Gehirn der Fliegen auf. Dank solcher Untersuchungen ist das Bewegungssehen von Fliegen heute einer der am besten verstandenen Nervenzellschaltkreise auf zellulärer Ebene.

Trotzdem versagten Computermodelle des Fliegen-Bewegungssehens bisher, sobald die Forscher den Modellen statt künstlicher Streifenmuster fotorealistische Bilder von natürlichen Umgebungen zeigten.

Natürliche Bilder bestehen aus vielen unterschiedlichen Objekten, die in Helligkeit und Kontrast stark variieren können. Diese natürliche Komplexität stellt Computermodelle vor große Herausforderungen.

Um besser zu verstehen, wie das Fliegenhirn es dem Tier ermöglicht sich auch in komplexen natürlichen Umgebungen zurechtzufinden, haben Michael Drews und Aljoscha Leonhardt ein Großaufgebot moderner neurobiologischer Methoden eingesetzt: Von der Elektrophysiologie über bildgebende Verfahren und Verhaltensstudien bis hin zur Modellanalyse mit Künstlicher Intelligenz.

Informationsverarbeitung ist Teamwork

In einem wichtigen Teil ihrer Untersuchungen ließen die Forscher unterschiedlich kontrastreiche Landschaftsbilder um die Fliegen rotieren. Dank eines angeborenen Verhaltens reagieren die Fliegen auf den optischen Fluss der Bilder mit einer Drehbewegung in entsprechender Richtung und Geschwindigkeit.

„Die Fliegen haben uns durch ihr Drehverhalten daher direkt gezeigt, ob sie die Bewegung und Geschwindigkeit der Umgebungsbilder noch auflösen können“, erklärt Drews. „So konnten wir untersuchen, welche Nervenzellen wie auf die verschiedenen Kontrastverhältnisse reagieren.“

Die Untersuchungen haben gezeigt, dass das Fliegenhirn gleich zu Beginn der Lichtreiz-Verarbeitung eine Feedbackschleife zum Kontrastvergleich eingebaut hat. Nimmt eine Nervenzelle einen hohen Kontrast wahr, vergleicht sie diesen Wert zunächst mit dem ihrer Nachbarzellen. Ist der Umgebungskontrast im Vergleich gering, antwortet die Nervenzelle stark. Ist der Umgebungskontrast dagegen größer, so schwächt die Zelle ihre Antwort ab.

Kontrast wird im Sehsystem der Fliege also immer nur relativ zum Umgebungskontrast kodiert. „Durch diesen Mechanismus passt das Sehsystem seine Kontrastempfindlichkeit ständig an den gegebenen Umgebungskontrast an,“ erklärt Leonhardt. „So entsteht eine robuste Informationsübertragung, die unter beinahe allen Bedingungen gleich gut funktioniert.“

Künstliche Intelligenz lernt Sehen

Um die Funktion des neuen Schaltkreises zu überprüfen, haben die Forscher das Sehsystem im Computermodell nachgebaut – einmal mit und einmal ohne die Feedbackschleife.

Tatsächlich konnten künstliche neuronale Netzwerke, die mit dem erweiterten Schaltkreis „Sehen“ gelernt haben, deutlich besser reagieren, als mit dem einfachen Schaltkreis trainierte Netzwerke. Entscheidend dabei: Der erweiterte Schaltkreis kommt auch mit natürlichen Umgebungsbildern gut klar.

Die Wissenschaftler haben somit in der Fliege einen sehr einfachen aber effektiven Algorithmus gefunden, der Bewegungen auch bei variierenden Kontrastverhältnissen berechnen kann. Ähnliche Verschaltungen werden zu Beispiel auch im Gehirn von Mäusen vermutet. So kann die Fliege uns helfen, die Gehirne anderer Tiere besser zu verstehen oder künstliche und computergestützte Sehsysteme vielleicht noch effizienter zu machen.

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie
Am Klopferspitz 18
82152 Planegg-Martinsried
E-Mail: merker@neuro.mpg.de
Tel.: 089 8578 3514

Michael S. Drews*, Aljoscha Leonhardt*, Nadezhda Pirogova, Florian G. Richter, Anna Schuetzenberger, Lukas Braun, Etienne Serbe, Alexander Borst (*equal contribution)
Dynamic signal compression for robust motion vision in flies
Current Biology, online am 09 Januar 2019
DOI: 0.1016/j.cub.2019.10.035

http://www.neuro.mpg.de/news/2020-01-borst/de – Mitteilung mit Hintergrundinformationen zum Thema.
http://www.neuro.mpg.de/borst/de – Webseite der Abteilung von Prof. Alexander Borst

Media Contact

Dr. Stefanie Merker Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Lüftung leicht gemacht

Eine einfache Anlage entfernt 90 Prozent potenziell Corona-haltiger Aerosole aus der Raumluft Die Luft in Klassenzimmern und anderen Räumen von infektiösen Aerosolen zu befreien, wird künftig deutlich einfacher. Forschende des…

Krebsforscher trainieren weiße Blutkörperchen für Attacken gegen Tumorzellen

Wissenschaftler am Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) und der Hochschulmedizin Dresden konnten gemeinsam mit einem internationalen Forscherteam erstmals zeigen, dass sich bestimmte weiße Blutkörperchen – so genannte Neutrophile Granulozyten…

CAPTN Future Zukunftscluster reicht Vollantrag ein

Autonomer öffentlicher Nahverkehr könnte in Kiel Realität werden Im Februar dieses Jahres gab das Bundesministerium für Bildung und Forschung (BMBF) die Finalisten im Wettbewerb um die Innovationsnetzwerke der Zukunft bekannt….

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close