Algen verändern den Nährstoffhaushalt von Korallenriffen

Der Riffschwamm Mycale fistulifera wandelt von Korallen und Algen stammendes organisches Material unterschiedlich um. Foto: Malik Naumann

Neue Forschungsergebnisse eines internationalen Forscherteams, unter gemeinsamer Leitung von Professor Christian Wild (Marine Ökologie, Universität Bremen) und Dr. Malik Naumann (Korallenriffökologie, Bremer Leibniz-Zentrum für Marine Tropenökologie, ZMT) zeigen nun erstmals, dass Algen im Vergleich zu Korallen einen wichtigen Prozess des Nährstoffrecyclings in Korallenriffen, die sogenannte „Schwammschleife“ (engl. sponge loop), entscheidend verändern können.

Die Ergebnisse dieser Studie wurden jetzt in der renommierten Fachzeitschrift „Functional Ecology“ durch die kanadische Erstautorin Dr. Laura Rix veröffentlicht, die kürzlich ihre Dissertation an der Universität Bremen und dem ZMT erfolgreich abgeschlossen hat (hier der Link zum Artikel: http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12758/full).

Nährstoffrecycling über die Schwammschleife

Korallen und Algen sind die wichtigsten Primärproduzenten in Korallenriffen und geben große Mengen an energiereichem gelösten organischen Material ab, das aus sehr kleinen Nährstoffbausteinen, wie Zuckern und Aminosäuren, zusammengesetzt ist. Eine weitere Organismengruppe im Riff – die Schwämme – saugt dieses unsichtbare gelöste organische Material förmlich auf und verwandelt es in größere und sichtbare Partikel, die als Produkte eines extrem schnellen Zellstoffwechsels wieder abgegeben werden. Diese wiederum energiereichen Partikel können dann von anderen Rifforganismen (zum Beispiel Krabben, Seesternen oder Würmern) direkt als Nahrungsquelle genutzt werden.

Die Transformation von organischem Material über die Schwammschleife stellt einen wichtigen Energie- und Nährstoffkreislauf im Nahrungsnetz von Korallenriffen dar, der Verlusten effektiv vorbeugt. Daher vermuteten die Forscher, dass die Schwammschleife auch eine wichtige Rolle beim Transfer der energie- und nährstoffreichen Produkte von Korallen und Algen einnehmen könnte.

Durch eine Reihe von Feldversuche in einem Korallenriff am Roten Meer zeigten die Wissenschaftler, dass das von Algen produzierte gelöste organische Material viel schneller von Schwämmen aufgenommen, verarbeitet und als Partikel wieder abgegeben wurde. Dies deutet an, dass Algen im Vergleich zu Korallen das Nährstoffrecycling über die Schwammschleife verstärken und somit den Nährstoffhaushalt in Riffökosystemen entscheidend verändern können.

Auswirkungen von Regimewechseln

Veränderungen im Nährstoffhaushalt wirken sich auf die natürliche Zusammensetzung und Produktivität von Nahrungsnetzen sowie auf vitale Funktionen von Korallenriffökosystemen aus. Die spannenden Ergebnisse dieser Studie ermöglichen nun erstmals Aussagen zu möglichen Auswirkungen auf das Nährstoffrecycling über die Schwammschleife im Vergleich von Korallen- und Algenriffen.

Demnach könnte im schlimmsten Fall nach einem Regimewechsel eine verstärkte Schwammschleife das Wachstum von Algen noch zusätzlich fördern. Ein solcher Teufelskreislauf würde es Steinkorallen dann annähernd unmöglich machen, Riffe gegen die Konkurrenz der Algen wieder zurückzuerobern.

Dies könnte auch einen möglichen Erklärungsansatz für die globale und oft irreversible Entwicklung von Korallen- zu Algenriffen liefern, welche weitreichende Konsequenzen nach sich zieht, nicht nur unter Wasser. Weltweit sind hunderte Millionen Menschen von Korallenriffen als Nahrungs- und Einkommensquelle abhängig.

Globale und lokale Stressfaktoren, wie die Erderwärmung und Überfischung, die das Gleichgewicht zwischen Korallen und Algen stören, sind für das momentan zu beobachtende katastrophale Korallensterben verantwortlich. Die Erkenntnisse der aktuellen Studie deuten nun an, dass nicht nur das Nährstoffrecycling, sondern letztlich auch der Wert und Nutzen dieser für uns wichtigen Ökosysteme durch Regimewechsel stark verändert werden.

Publikation: Laura Rix, Jasper M. de Goeij, Dick van Oevelen, Ulrich Struck, Fuad A. Al-Horani, Christian Wild, Malik S. Naumann (2016): Differential recycling of coral- and algal-derived dissolved organic matter (DOM) by coral reef sponges. Functional Ecology (in press)

Weitere Informationen:

Universität Bremen
Fachbereich Biologie / Chemie
Marine Ökologie
Prof. Dr. Christian Wild
Tel. 0421/218-63367
E-Mail: christian.wild@uni-bremen.de

Bremer Leibniz-Zentrum für Marine Tropenökologie (ZMT)
Korallenriffökologie
Dr. Malik Naumann
Tel. 0421/23800-119

Media Contact

Eberhard Scholz idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-bremen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Das „Überlebensprotein“ für Krebszellen ausschalten

Man nennt es das „Überlebensprotein“, weil es eine zentrale Rolle beim Wachstum von Krebszellen spielt: Survivin beeinflusst gleich zwei wichtige Prozesse in Körperzellen – den Zelltod sowie die Zellteilung. Chemikern…

MUCCnet: Präzisionstechnik erlaubt Quantifizierung städtischer Treibhausgasemissionen

In München steht das weltweit erste vollautomatische Sensornetzwerk zur Messung städtischer Treibhausgasemissionen basierend auf bodengestützter Fernerkundung der Atmosphäre. Entwickelt haben es Wissenschaftlerinnen und Wissenschaftler in der Arbeitsgruppe von Jia Chen,…

Sicherheitslücken auf der Nanoskala aufspüren

Das moderne Leben und die fortschreitende Digitalisierung hängen entscheidend von elektronischen Systemen ab. Spektakuläre Cyber-Attacken in der Vergangenheit haben die Verwundbarkeit solcher Systeme gezeigt. Die Fortschritte in der Fertigungstechnologie nanoelektronischer…

Partner & Förderer