Aktivitäten an der Grenzfläche: Wie Enzyme in der Membran Informationen weiterleiten

Es ist immer wieder faszinierend, wie die Natur in hohem Maße effiziente Strukturen hervorgebracht hat, indem sie ein Molekül mit mehreren Funktionen ausstattet. So verhält es sich etwa mit den Lipiden (oder Fetten) in der Zellmembran: Sie bestimmen die strukturellen Eigenschaften der Membran, sind Energieträger und häufig auch Glieder in wichtigen Signalketten.

Damit die Lipide diese unterschiedlichen Funktionen erfüllen können, werden sie von Enzymen entsprechend modifiziert. Wie diese Enzyme arbeiten, war bisher nur mit großen Schwierigkeiten zu entschlüsseln. Wissenschaftlerinnen der Arbeitsgruppe von Prof. Clemens Glaubitz am Institut für Biophysikalische Chemie der Goethe-Universität ist es jetzt erstmals gelungen, die Kinetik einer membrangebunden enzymatischen Reaktion mittels zeitaufgelöster Festkörper-NMR zu verfolgen.

„Die Enzyme, die uns interessieren, sind meist periphere oder integrale Membranproteine. Sie katalysieren oftmals Reaktionen, die sich über zwei Phasen erstrecken. Die Hürde für die Aufklärung der Enzymkinetik besteht darin, dass sowohl lösliche also auch lipophile Substrate involviert sind“, erklärt Glaubitz. So verhält es sich auch mit der Diacylglycerinkinase (DGK) aus dem Bakterium E. coli, dessen Funktion die Arbeitsgruppe von Glaubitz aufklärte. Es handelt sich um ein integrales Membranprotein, welches das Lipid Diacylglycerin (DAG) in Phosphatidylsäure (Phosphatidic Acid, PA) unter Verbrauch von ATP umwandelt. Beide Lipide spielen wichtige Rollen in unterschiedlichen Signalwegen, die durch die Aktivität von DGK an oder abgeschaltet werden.

Weil Lipide sich aufgrund ihres hydrophoben (wasserabweisenden) Charakters nicht in Lösung untersuchen lassen, verwendeten die Forscher die Methode der Festkörper-NMR. Sie ermöglicht NMR Spektroskopie sowohl in flüssiger als auch in fester Phase. Wie die Arbeitsgruppe von Glaubitz in der angesehenen Fachzeitschrift „nature chemical biology“ berichtet, gelang es ihr, beim DGK simultan den Umsatz von ATP in der löslichen Phase sowie die Erzeugung von PA in der Lipidphase zu beobachten. „Die Daten erlauben einen detaillierten Einblick in die Funktionsweise von DGK und demonstrieren einen vielversprechenden methodischen Ansatz für zukünftige Studien zu den molekularen Grundlagen des Lipid Signalling“, erläutert Glaubitz die Bedeutung seiner Arbeit.

Publikation:
Ullrich, S. J., Hellmich, U. A., Ullrich, S. & Glaubitz, C. (2011) Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS –NMR. Nature Chem. Biol. published online ahead of print. doi:10.1038/nchembio.543
Informationen: Prof. Clemens Glaubitz, Centre for Biomolecular Magnetic Resonance & Institute for Biophysical Chemistry, Campus Riedberg,

Tel: (069) 798-29927; glaubitz@em.uni-frankfurt.de http://www.uni-frankfurt.de/fb/fb14/BiochemieH/BPC/AK_Glaubitz/

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 2 85 30,

E-Mail hardy@pvw.uni-frankfurt.de

Media Contact

Dr. Anne Hardy idw

Weitere Informationen:

http://www.uni-frankfurt.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer