3D-Struktur von außergewöhnlichem Naturwirkstoff definiert

Die Publikation hat es auch auf die Titelseite der aktuellen Ausgabe von "Chemistry – A European Journal" geschafft. Copyright: Katharina Pallitsch

Durch geschickte chemische Synthese gelang es Katharina Pallitsch von der Fakultät für Chemie, die räumliche Struktur eines erst kürzlich entdeckten Phosphonats aufzuklären, welches in Zukunft als medizinischer Wirkstoff Anwendung finden könnte.

Dies ist ein erster, wichtiger Schritt auf dem Weg zur Aufklärung des Biosynthesewegs dieser Verbindung. Die Arbeit erscheint als Coverstory der aktuellen Ausgabe des Fachjournals „Chemistry – A European Journal“ und wurde als „Hot Paper“ klassifiziert.

Phosphor ist einer der wichtigsten Nährstoffe. Jede Zelle benötigt ihn, um zu wachsen und sich zu vermehren. Daher nehmen alle Lebewesen Phosphor aus ihrer Umwelt auf und bauen ihn in unterschiedliche Zellstrukturen ein. Ein wichtiges Beispiel für ein Molekül, das nicht ohne Phosphor auskommt, ist die DNA, die unsere Erbinformation trägt.

Die meisten Organismen können Phosphor nur in einer bestimmten Form nutzen, nämlich als sogenanntes anorganisches Phosphat. Es gibt allerdings auch andere Formen von phosphorhältigen Molekülen, zum Beispiel Phosphonate.

Sie können im Labor hergestellt werden, aber auch natürlichen Ursprungs sein und haben ein breites Anwendungsspektrum, das vom landwirtschaftlichen Bereich (Dünger oder Pflanzenschutzmittel) bis hin zur Humanmedizin (als antibakterielle oder antivirale Wirkstoffe) reicht. Phosphonate sind daher eine wirtschaftlich bedeutende Naturstoffklasse – ein sehr hoher Prozentsatz aller neu entdeckten Phosphonate biologischen Ursprungs wird kommerziell genutzt (15%).

Auf der Suche nach neuen Vertretern dieser Naturstoffklasse werden modernste genetische Sequenzierungsverfahren eingesetzt. Man erhofft sich dadurch die ökonomisch rentable Entdeckung neuer, potentieller Wirkstoffe. Erst kürzlich konnten WissenschafterInnen einige strukturell außergewöhnliche, bisher unbekannte Phosphonate isolieren, darunter: Hydroxynitrilaphos und Phosphonocystoximat.

Allerdings reichten die gewonnenen Mengen nicht dazu aus, um die Aktivität dieser Verbindungen gegenüber verschiedenen Krankheitserregern zu testen. Auch die genaue räumliche Struktur der Verbindungen blieb unbekannt. „Die tatsächliche, biologische Wirkung hängt aber in den meisten Fällen von der exakten, dreidimensionalen Struktur einer Verbindung ab“, erklärt Katharina Pallitsch vom Institut für Organische Chemie der Universität Wien, die gemeinsam mit den Studierenden Barbara Happl und Christian Stieger zum Thema forscht.

In ihrer aktuellen Studie gelang es ihnen nun erstmals, die exakte räumliche Struktur beider Moleküle zu definieren. „Außerdem konnten wir genügend große Mengen von beiden Substanzen herstellen, um deren biologische Aktivität zu testen“, so Pallitsch.

Eine ebenfalls in dieser Arbeit präsentierte eigens entwickelte Markierungsstrategie könnte es in Zukunft ermöglichen, den Biosyntheseweg von Hydroxynitirlaphos näher zu erforschen. Dies soll dabei helfen zu klären, ob Hydroxynitrilaphos ein Abbauprodukt oder ein Zwischenprodukt der Synthese von Hydroxyphosphonocystoximat, einem weiteren Vertreter der Phosphonate, ist.

Publikation in „Chemistry – A European Journal“
Determination of the absolute configuration of (–)-hydroxynitrilaphos and related biosynthetic questions, Katharina Pallitsch, Barbara Happl, Christian Stieger,
DOI: 10.1002/chem.201702904

Wissenschaftlicher Kontakt
Dr. Katharina Pallitsch
Institut für Organische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-521 23 bzw. 521 05
katharina.pallitsch@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.500 MitarbeiterInnen, davon 6.500 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit 174Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

http://onlinelibrary.wiley.com/doi/10.1002/chem.201702904/abstract Publikation

Media Contact

Stephan Brodicky Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer