Untergrund beeinflusst Halbleiter-Monolagen

An Schichtdienst gewöhnt: Das Marburger Kernteam der Studienautoren besteht aus (von links) Dr. Arash Rahimi-Iman, Sina Lippert und Lorenz Maximilian Schneider. Foto: Philipps-Universität / AG Experimentelle Halbleiterphysik; die Abbildung darf nur im Zusammenhang mit der Berichterstattung über die angezeigte wissenschaftliche Publikation verwendet werden.

Halbleitermaterialien stecken in vielen Geräten, beispielsweise in Bauteilen von Computern, in Solarzellen, in Fotodetektoren und Leuchtdioden. „Interessanterweise werden einige Halbleiter wie Wolframdiselenid, Molybdändisulfid und andere erst beim Übergang vom dreidimensionalen Kristall zum zweidimensionalen Material optisch aktiv“, sagt Lorenz Maximilian Schneider, der sich mit Sina Lippert die Erstautorenschaft an der Studie teilt.

Beide übernahmen den Großteil der experimentellen Arbeiten, um zu erforschen, wie sich bekannte Materialien verhalten, wenn sie als so genannte Monolage vorliegen. Darunter versteht man ultradünne Schichten, deren Schichtdicke nur so groß ist wie ein einzelnes Molekül – es liegen also niemals mehrere Moleküle übereinander.

Das Forschungsteam brachte Wolframdiselenid auf eine ganze Reihe von verschiedenen Untergründen oder Substraten auf, um sie anschließend optisch zu untersuchen. „Mit eigens in Marburg hergestellten, zweidimensionalen Materialien bestand ein Pool von Proben, die sehr systematisch verglichen werden konnten“, erläutert Lippert. „Dadurch konnten wir neue Aussagen über den Einfluss des Substratmaterials auf optische Eigenschaften von Wolframdiselenid treffen.“

Die Ergebnisse fassten die Wissenschaftlerinnen und Wissenschaftler in ihrer aktuellen Studie zusammen: Unter anderem beeinflusst der Untergrund offenbar stark, wie schnell Quasiteilchen zerfallen – dabei handelt es sich um Paare aus Elektronen und Löchern, also Stellen im Halbleiter, an denen Elektronen fehlen. Beim Zerfall strahlt das Material Licht ab, das zur Messung genutzt werden kann.

Das Team profitierte unter anderem von der finanziellen Unterstützung durch den Marburger Sonderforschungsbereich „Struktur und Dynamik innerer Grenzflächen“ der Deutschen Forschungsgemeinschaft. Die Förderung ermöglichte eine Verbesserung des Messaufbaus, wodurch die mikroskopischen Untersuchungen erleichtert wurden.

„In Zukunft möchten wir die Arbeiten in Richtung gestapelter Schichtsysteme ausweiten“, erklärt Seniorautor Rahimi-Iman. Dabei geht es darum, dreidimensionale Halbleiter aus verschiedenartigen 2D-Materialien nach Belieben zusammenzusetzen, zum Beispiel für Photodetektoren, Solarzellen oder Leuchtdioden.

Dr. Arash Rahimi-Iman ist Mitarbeiter des Wissenschaftlichen Zentrums für Materialwissenschaften sowie der Marburger Arbeitsgruppe Experimentelle Halbleiterphysik von Professor Dr. Martin Koch. Außer Marburger Forscherinnen und Forschern beteiligten sich Arbeitsgruppen von der Columbia Universität sowie vom „Stevens Institute of Technology“ aus den USA an der Publikation. Neben der Deutschen Forschungsgemeinschaft förderten der Forschungsförderfonds der Philipps-Universität sowie der Deutsche Akademische Austauschdienst durch sein „RISE“-Programm die Forschungsarbeiten, die der Veröffentlichung zugrunde liegen.

Originalpublikation: Sina Lippert, Lorenz Maximilian Schneider & al.: Influence of the Substrate Material on the Optical Properties of Tungsten Diselenide Monolayers, 2D materials 2017

Weitere Informationen:
Ansprechpartner: Dr. Arash Rahimi-Iman,
AG Experimentelle Halbleiterphysik
Tel.: 06421 28-21323
E-Mail: a.r-i@physik.uni-marburg.de

Media Contact

Johannes Scholten idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-marburg.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer