Übersetzungsfehler im Gehirn von Demenzpatienten

Die nun identifizierten Proteine sollten eigentlich nicht existieren, aber sie bilden den Kern bisher rätselhafter Ablagerungen, die bei genetisch bedingten Störungen des Nervensystems aus dem Spektrum der FTD/ALS-Erkrankungen auftreten. Die Eiweißpartikel sind vermutlich schädlich und könnten daher ein Ansatzpunkt für therapeutische Maßnahmen sein.

Die Frontotemporale Demenz (FTD), mitunter auch Frontotemporale Lobärdegeneration (FTLD) genannt, und die Amyotrophe Lateralsklerose (ALS) zählen zu einer Gruppe von Erkrankungen des Nervensystems mit überlappenden Symptomen: Die Patienten leiden häufig unter einer Demenz, Persönlichkeitsveränderungen oder auch unter Sprach- und Bewegungsstörungen.

Die Krankheit bricht oft schon deutlich vor dem 65. Lebensjahr aus. Die Krankheitsursache ist meist unbekannt, in etwa 30 Prozent der Fälle ist sie genetisch bedingt. In Europa zeigt sich bei etwa 10 Prozent aller erkrankten Personen ein besonderer Gendefekt: In der DNA – dem Träger der Erbinformation – ist ein bestimmter Ausschnitt in überlanger Kopie aneinandergereiht.

Gleichzeitig finden sich in den Hirnzellen dieser Patientengruppe Eiweißpartikel, deren Zusammensetzung bislang unbekannt war. Das Team um die Münchner Molekularbiologen Dieter Edbauer und Christian Haass konnte jetzt nachweisen, dass beide Beobachtungen – Gendefekt und Eiweißpartikel – miteinander in Verbindung stehen.

„Wir haben festgestellt, dass diese Proteine auf eine genetische Besonderheit zurückgehen, die bei vielen Patienten auftritt. An einer Stelle im Gen C9orf72 finden sich hundertfache Wiederholungen der Sequenz GGGGCC, die bei gesunden Personen weniger als 20-mal vorkommt“, erläutert Prof. Edbauer, der sowohl am DZNE als auch an der LMU tätig ist. „Erstaunlich ist allerdings, dass daraus Proteine entstehen. Denn diese Wiederholungen liegen in einem Bereich der DNA, der eigentlich nicht in Proteine übersetzt wird.“

Vermeintlich stummer Bereich des Erbguts

In der DNA sind die Baupläne für Proteine hinterlegt. Am Anfang eines solchen Bauplans steht nahezu immer ein fest definiertes molekulares Startsignal. Die Region mit den vielfachen Wiederholungen enthält jedoch kein gängiges Startsignal und sollte daher nicht in Proteine übersetzt werden. Offenbar wird die Prozesskette der Proteinsynthese hier anders als sonst üblich in Gang gesetzt. „Man kennt zwei sehr seltene Alternativen zum gängigen Mechanismus. Welche Vorgänge hier wirksam sind, wissen wir bisher nicht“, so Prof. Haass, Standortsprecher des DZNE in München und Leiter des Lehrstuhls für Stoffwechselbiochemie an der LMU.

Durch Experimente in Zellkulturen konnten die Forscher jedoch nachweisen, dass überlange Abfolgen der Sequenz GGGGCC – auch ohne das gängige Startsignal – tatsächlich in Proteine übersetzt werden. Die gleichen Proteine konnten sie auch in den typischen Partikeln finden, die sich im Gehirn von Patienten ansammeln: Es handelt sich dabei um sehr lange „Dipeptid-Repeat Proteine“, die aus einer Verkettung immer gleicher Bausteine bestehen.

„Das sind sehr ungewöhnliche Proteine, die ansonsten im Körper überhaupt nicht vorkommen“, sagt Edbauer. „Soweit wir wissen, sind sie völlig nutzlos und sehr schlecht löslich. Deswegen bilden sie Aggregate und scheinen die Nervenzelle zu schädigen. Der schädigende Einfluss ist noch nicht eindeutig bewiesen, aber vieles spricht dafür.“ Ihre Besonderheit mache diese Proteine jedenfalls zu einem interessanten Ziel für neuartige Therapien. „Da der Mechanismus ihrer Herstellung so ungewöhnlich ist, finden wir vielleicht Wege, ihre Entstehung gezielt zu hemmen, ohne die Synthese anderer Proteine zu stören. Man könnte auch gegen ihre Aggregation vorgehen und versuchen, ihren Abbau zu beschleunigen.“

Ein Patentantrag ist eingereicht und die Wissenschaftler haben große Pläne. „Es ist unser Traum, am DZNE in München eine Therapie für diese schreckliche Krankheiten zu entwickeln“, so Haass und Edbauer.

Originalveröffentlichung
„The C9orf72 GGGGCC Repeat is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS”, Kohji Mori, Shih-Ming Weng, Thomas Arzberger, Stephanie May, Kristin Rentzsch, Elisabeth Kremmer, Bettina Schmid, Hans A. Kretzschmar, Marc Cruts, Christine Van Broeckhoven, Christian Haass, Dieter Edbauer, Science Express: https://www.sciencemag.org/content/early/2013/02/07/science.1232927.full

Das Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE) erforscht die Ursachen von Erkrankungen des Nervensystems und entwickelt Strategien zur Prävention, Therapie und Pflege. Es ist eine Einrichtung in der Helmholtz-Gemeinschaft Deutscher Forschungszentren mit Standorten in Berlin, Bonn, Dresden, Göttingen, Magdeburg, München, Rostock/Greifswald, Tübingen und Witten. Das DZNE kooperiert eng mit Universitäten, deren Kliniken und außeruniversitären Einrichtungen. Kooperationspartner in München ist unter anderem die Ludwig-Maximilians-Universität (LMU).

Media Contact

Dr. Marcus Neitzert idw

Weitere Informationen:

http://www.dzne.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Durchbruch bei CRISPR/Cas

Optimierte Genschere erlaubt den stabilen Einbau von großen Genen. Großer Fortschritt an der CRISPR-Front. Wissenschaftlern des Leibniz-Instituts für Pflanzenbiochemie (IPB) ist es erstmals gelungen, sehr effizient große Gen-Abschnitte stabil und…

Rittal TX Colo: Das neue Rack für Colocation Data Center

Rittal TX Colo: Flexibel, skalierbar und zukunftssicher Mit der zunehmenden Digitalisierung und künftig auch immer mehr KI-Anwendungen steigt der Bedarf an Rechenleistung signifikant – und damit boomt der Colocation-Markt. Unternehmen…

Partner & Förderer