Transistor in der Fliegen-Antenne: Duftrezeptoren von Insekten steuern Empfindlichkeit selbst

Die Antennen der Fruchtfliege Drosophila melanogaster, hier in dunkelgelb schematisch dargestellt. Dunkelrot: Duftmoleküle. Rechts: Bei den empfindlichen Geruchsrezeptoren handelt es sich um Protein-Dimere, die aus einem Duftrezeptor (Or22a) und einem Ko-Rezeptor (Orco) bestehen und sehr sensitiv Reaktionen auf Duftmoleküle vermitteln können. Oben: Zustand der Sensibilisierung - schwacher Ionenfluss, bewirkt durch cAMP; unten: „Durchschalten“ des Rezeptorsystems - Öffnung des Ionenkanals und elektrische Reizentstehung. Die Bilder sind der Animation entnommen.<br><br>Graphik: Dieter Wicher, Max-Planck-Institut für chemische Ökologie. Filmische Animation: Moves Like Nature, Kimberly Falk<br>

Wissenschaftler des Max-Planck-Instituts für chemische Ökologie haben jetzt nachgewiesen dass das enorme Geruchsvermögen von Insekten auf der Selbstregulation ihrer Duftrezeptoren beruht: Geringste Mengen von Duftmolekülen unterhalb der Reaktionsschwelle bewirken die Sensibilisierung bestimmter Duftrezeptoren, das Auftreffen weiterer Moleküle löst die Öffnung eines Ionenkanals aus. Eine Geruchsstimulierung unterhalb der Reizschwelle erhöht die also Sensibilität des Rezeptors.

Dank ihrer hochentwickelten Antennen können sich Insekten an kleinsten Geruchskonzentrationen orientieren. Perfekt ausgestattet mit verschiedenen Geruchsrezeptoren finden sie Nahrung, optimale Eiablageplätze oder Geschlechtspartner. Wissenschaftler des Max-Planck-Instituts für chemische Ökologie, Jena, haben jetzt erstmals experimentell und mithilfe von Mutanten bestätigt, dass das enorme Geruchsvermögen von Insekten − sie erkennen wenige tausend Moleküle pro Milliliter Luft, während Menschen Hunderte von Millionen Duftmoleküle zur Geruchswahrnehmung benötigen − auf einer Selbstregulation ihrer Duftrezeptoren beruht:
Geringste Mengen von Duftmolekülen unterhalb der Reaktionsschwelle bewirken die Sensibilisierung bestimmter Duftrezeptoren, und das Auftreffen weiterer Moleküle kurz danach löst die Öffnung eines Ionenkanals aus, was Reaktion und Flugverhalten der Fliege steuert. Dies bedeutet, dass eine Geruchsstimulierung unterhalb der Reizschwelle die Sensibilität des Rezeptors erhöht. Kommt innerhalb einer bestimmten Zeitspanne ein zweiter Geruchsimpuls hinzu, wird eine neuronale Reaktion ausgelöst. (PLOS ONE, March 12, 2013, DOI: 10.1371/journal.pone.0058889)

Empfindliches Riechen ist überlebenswichtig

Es ist erstaunlich, wie viele Fruchtfliegen (Drosophila melanogaster) zu einem angefaulten Apfel finden können. Insekten sind dafür bekannt, dass sie geringste Konzentrationen von Geruchsmolekülen wahrnehmen können, besonders Sexuallockstoffe, aber auch „Nahrungssignale“.

Wissenschaftler um Dieter Wicher und Bill Hansson vom Max-Planck-Institut für chemische Ökologie widmen sich der Antwort auf die Frage, warum im Vergleich zu vielen anderen Tieren Insekten so sicher und sensitiv Duftmoleküle aufspüren können. Im Zentrum der Aufmerksamkeit stehen die Duftrezeptorproteine in der Antenne, der Nase der Insekten. Diese Proteine der Insekten sind evolutionsgeschichtlich jung und ihr molekularer Aufbau könnte eine Grundlage für die empfindliche Geruchswahrnehmung sein.

Das Rezeptorsystem Or22a-Orco

Insekten-Duftrezeptoren bilden ein Rezeptorsystem, bestehend aus dem eigentlichen Rezeptor-Protein und einem Ionenkanal, die zusammengeschaltet und nach Bindung eines Geruchsmoleküls den empfindlichen Nervenreiz auslösen. Der Mechanismus war kürzlich am Rezeptorsystem Or22a-Orco beschrieben worden (Wicher et al., Nature 452 (2008); Sato et al., Nature 452 (2008), siehe auch Pressemeldung „Ein Kombi-Rezeptor ermöglicht Insekten eine superempfindliche als auch schnelle Wahrnehmung von Duftstoffen in der Umwelt“ http://www.ice.mpg.de/ext/fileadmin/extranet/common/documents/press_releases/Pressem_Wicher2008.pdf 13.4.2008).
Neben der Funktion als sogenannte ionotrope Rezeptoren, die nach Bindung von Duftmolekülen einen elektrischen Strom leiten, können Duftrezeptoren auch intrazelluläre Signale auslösen. Dabei kommt es zur Bildung von cyclischem Adenosinmonophosphat (cyclo- oder cAMP), das einen Stromfluss durch den Ko-Rezeptor Orco hervorruft. Die Bedeutung des schwachen und langsamen Stromflusses konnte bislang jedoch nicht geklärt werden.

Drosophila-Mutante Orco mut

Merid N. Getahun, Doktorand aus Äthiopien, hat zusammen mit seinen Kollegen zahlreiche Experimente an Geruchsneuronen von Fruchtfliegen durchgeführt. Dabei haben sie winzige Mengen von Wirkstoffen direkt in die Sinneshärchen, die auf der Fliegenantenne die olfaktorischen Sinnesneuronen beherbergen, injiziert, die die Bildung von cAMP fördern, hemmen oder nachahmen. Als Geruchsstoff boten die Forscher den Fliegen das Ananas-ähnliche Buttersäureethylester an und maßen mithilfe von feinen, aus Glasfasern gefertigten Mikroelektroden die Aktivität der Nervenzellen. Als Kontrollgruppe dienten gentechnisch veränderte Fruchtfliegen, bei denen der Ko-Rezeptor Orco nicht mehr reaktionsfähig ist. „Die Tatsache, dass die Mutanten einerseits nicht auf cAMP, vor allem aber auch auf die Hemmung oder Aktivierung beteiligter Schlüsselenzyme wie Proteinkinase C und Phospholipase C nicht reagierten, zeigt, dass das enorme Geruchsvermögen von Insekten über ihre Duftrezeptoren intrazellulär gesteuert wird“, so Dieter Wicher, Leiter der Forschungsgruppe. Die Kombination aus Duft- und Ko-Rezeptor Orco ähnelt einem Transistor, so Wicher weiter: Ein schwacher, elektrischer Basisstrom reicht aus, um den Hauptstrom an Ionen auszulösen, der dann das Neuron aktiviert. Dieser Prozess kann auch als eine Art Kurzzeitgedächtnis in der Insektennase betrachtet werden. Ein schwacher Reiz löst zwar beim ersten Mal noch keine Reaktion aus, wiederholt er sich allerdings innerhalb einer bestimmten Zeitspanne, wird eine elektrische Reaktion ausgelöst. [JWK]

Originalveröffentlichung:
Merid N. Getahun, Shannon B. Olsson, Sofia Lavista-Llanos, Bill S. Hansson, Dieter Wicher: Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors. PLOS ONE, March 12, 2013; DOI: 10.1371/journal.pone.0058889
http://dx.doi.org/10.1371/journal.pone.0058889

Weitere Informationen von
Priv. Doz. Dr. Dieter Wicher, +49 3641 57-1415, dwicher@ice.mpg.de

Bild- und Filmmaterial
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de oder per download via http://www.ice.mpg.de/ext/735.html

Media Contact

Dr. Jan-Wolfhard Kellmann Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer