Temperatur-Gedächtnis der Pflanzen dauert sechs Wochen

Der Pflanzenbiologe Prof. Kentaro Shimizu von der Universität Zürich und seine japanischen Kollegen konnten nun zeigen, dass ein für die Blütezeit verantwortliches Gen als Gedächtnis fungiert. Dieses Gen registriert die Temperatur der letzten sechs Wochen und beeinflusst die pflanzliche Entwicklung entsprechend. Diese Erkenntnis ermöglicht es, das Blühverhalten der Pflanzen zu modellieren und mögliche Konsequenzen des Klimawandels auf pflanzliche Ökosysteme vorauszusagen.

Viele Pflanzen blühen im Frühjahr, da sie die längere Kälteperiode des vorangegangenen Winters erkennen können. Dabei müssen Pflanzen unempfindlich sein gegenüber kurzfristig schwankenden Temperaturen, wie sie aufgrund des Tag-Nacht-Rhythmus oder von Wetterveränderungen über mehrere Tage respektive Wochen auftreten. Diese Temperaturschwankungen sind oft dem saisonalen Trend entgegenlaufend und müssen als solche erkannt werden. Ohne ein Langzeitgedächtnis für vorangegangene Temperaturen wäre es für Pflanzen schwierig, die richtige Saison für die Blüte zu erkennen.

Der Pflanzenbiologe Prof. Kentaro Shimizu und sein Doktorand Masaki Kobayashi von der Universität Zürich haben nun in Zusammenarbeit mit einem japanischen Forscherteam einen Weg gefunden, den internen Status von Pflanzen zu messen. Dabei bestimmten sie die Expression des für die Blüte wichtigen Gens FLC. Dieses gilt als ein Hauptschalter des blütenregulierenden Netzwerkes. Die Messungen ergaben, dass das regulatorische System dieses Gens Informationen über vorherrschende Temperaturen der letzten sechs Wochen gespeichert hat. Durch statistische Analyse über zwei Jahre hinweg zeigte sich, dass man 83 Prozent der Variation der FLC-Expression durch die Temperaturen der vorangegangenen sechs Wochen erklären kann, nicht aber durch die Temperaturen über längere oder kürzere Zeiträume.

Die Praxistauglichkeit dieses Modells konnte mit Experimenten nachgewiesen werden, in denen Pflanzen künstlich unterschiedlichen Temperaturbedingungen ausgesetzt wurden. Dabei variierte die Expression des FLC-Gens entsprechend den modellbasierten Vorhersagen. Die mathematischen Modelle, welche die genetischen Grundlagen der Blütezeit berücksichtigen, können also mithelfen, die Reaktion von Pflanzen auf den Klimawandel vorherzusagen.

Wie die Blütezeit in der Natur reguliert wird

Forschungsobjekte waren Pflanzen der Spezies Arabidopsis halleri (Hallersche Schaumkresse), die sich vom Tiefland bis hin zu alpinen Regionen in Europa und Ostasien ausgebreitet hat. Diese Art ist eine nahe Verwandte des genetischen Modellorganismus Arabidopsis thaliana (Ackerschmalwand), in welchem die genetischen Grundlagen der Blütenentwicklung ausgiebig untersucht wurden. In diesem Modell ist bekannt, dass das FLC-Gen ein Hauptschalter im Netzwerk ist, welches die Blütezeit bestimmt. Dennoch war unklar, wie die Blütezeit unter natürlichen Bedingungen reguliert wird. Denn im Gegensatz zu den sonst verwendeten Gewächshäusern gibt es in der Natur kurzfristige Temperaturschwankungen und langfristige saisonale Trends.

Als erstes isolierten die Forscher das FLC-Gen aus Arabidopsis halleri und wiesen nach, dass es auch in diesem Organismus die Blütezeit reguliert. Danach wurden von sechs in der Natur wachsenden Individuen dieser mehrjährig blühenden Spezies Gewebeproben entnommen. Und zwar über zwei Jahre hinweg jede Woche, auch unter extremen Wetterbedingungen wie Schnee, Gewitter oder Sturm. In ihrem Forschungsartikel in der Fachzeitschrift PNAS zeigen die Forscher, dass die Gedächtnis- und Pufferfunktion des FLC-Gens um die sechs Wochen dauert und somit als Filter für kurzfristige Temperaturschwankungen dient.

Literatur:
Shinichiro Aikawa, Masaki J. Kobayashi, Akiko Satake, Kentaro K. Shimizu, and Hiroshi Kudoh: Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proceedings of the National Academy of Sciences, USA, doi/10.1073/pnas.0914293107.
Kontakt:
Prof. Dr. Kentaro Shimizu, Institut für Pflanzenbiologie, Universität Zürich,
Tel. +41 44 634 82 47 oder 82 11
E-Mail: shimizu@botinst.uzh.ch

Media Contact

Beat Müller idw

Weitere Informationen:

http://www.uzh.ch/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer