Sprühstrahl und Schichtdicke vor dem Lackieren numerisch ermitteln

Fast eine halbe Million Mikrospiegel trägt dieses mechatronische Bauteil, das seit längerem für Videoprojektionen eingesetzt wird. In einem neuen Messgerät tasten feine Lichtstrahlen Oberflächen berührungslos ab.&nbsp;<br> ©Fraunhofer IPT

Die Lackierbarkeit einer Automobilkarosserie lässt sich künftig amRechner vorhersagen. Ein neu entwickeltes, numerisches Programm simuliertSchichtdickenverteilungen und Auftragswirkungsgrad beim Lackieren mithoher Genauigkeit. Die Geometrie des zu lackierenden Objekts spielt dabeikeine Rolle.

Grundlegende Untersuchungen der physikalischen Prozesse bei der Lackapplikation gewinnen zunehmend an Bedeutung. Sowohl die Ansprüche an die optische und funktionelle Qualität von Lackschichten als auch an den Lackierprozess an sich und seine Reproduzierbarkeit steigen stetig. Strömungsmechanische und elektrostatische Effekte beeinflussen diese Prozesse und Verfahrensschritte wesentlich: die Luftströmung in der Lackierkabine ebenso wie die Berechnung der Partikelbahnen, der Schichtdickenverteilung oder des Auftragswirkungsgrads bei der Applikation. Wissenschaftler des Fraunhofer IPA, unter anderem Dr. Joachim Domnick und Dr. Andreas Scheibe, haben ein Programm entwickelt, das den Beschichtungsvorgang mit elektrostatisch unterstützten Hochrotationszerstäubern numerisch simuliert. Es basiert auf einem kommerziellen Strömungsberechnungs-Programmpaket, ergänzt um die zusätzlichen elektrostatischen Effekte einschließlich der Raumladung durch die geladenen Lacktropfen.

»Mit diesem Programm können wir Schichtdickenverteilungen sowie Auftragswirkungsgrad für nahezu beliebige Substratgeometrien mit hoher Genauigkeit vorhersagen«, erklärt Andreas Scheibe. Als Ausgangsbasis für die Simulation benötigen die IPA-Wissenschaftler lediglich Zerstäuberparameter wie Lenkluftvolumenstrom oder Hochspannung und die Tropfengrößen am Glockentellerrand. So lassen sich künftig Zerstäubereinstellungen schneller und effektiver bestimmen oder die Lackierbarkeit einer Automobilkarosse vorhersagen. Generell ermöglichen numerische Simulationen die kurzfristige Realisierung von Parameterstudien, gewähren Einblick in grundlegende Vorgänge des Lackierprozesses und ersetzen in weiten Teilen komplexe und teure experimentelle Untersuchungen. »Bereits im Vorfeld einer Entwicklung können damit erhebliche Kosten eingespart werden«, so Scheibe.

Simulationen von Strömungsvorgängen und elektrischen Feldern sind in den entsprechenden Fachgebieten bereits gang und gäbe. Scheibe und Domnick haben sie an die Anforderungen der Lackiertechnik angepasst und zwei kommerzielle Rechenprogramme erweitert. Ihr Ergänzungsmodul berechnet die Bahnen geladener Partikel in elektrischen Feldern unter Berücksichtigung aller auftretenden elektrischen Kräfte. Bei der Simulation von elektrostatischen Lackierungen können damit unter anderem die Schichtdickenverteilung und der Auftragswirkungsgrad eines statischen Sprühbildes ermittelt werden. Ein weiteres am Fraunhofer IPA entwickeltes Programm ermöglicht die Simulation dynamischer Beschichtungsvorgänge. Hierbei wird die Lackmassenverteilung in dem zuvor berechneten statische Sprühbild entlang einer vorgegebenen Beschichtungsbahn zeitlich summiert und aufaddiert. Damit lassen sich die Beschichtungsergebnisse auch für komplexere dreidimensionale Werkstücke präzise vorherzusagen.

In der Lackiertechnik existiert eine Vielzahl potenzieller Anwendungen für die numerische Strömungssimulation. So kann beispielsweise eine ungünstige Luftführung in der Lackierkabine Staubteilchen auf das lackierte Objekt wirbeln oder dazu führen, dass sich bereits getrockneter Lackteilchen aus wenig durchströmten Bereichen der Kabine auf ihm niederschlagen. Bei der elektrostatischen Applikation von Nasslack oder Pulver hat die Luftströmung einen deutlichen Einfluss auf die Schichtdickenverteilung und den Auftragswirkungsgrad. Eine zu hohe Sinkluftgeschwindigkeit zwischen Zerstäuber und Objekt wird den Sprühkegel verzerren und zu einem zusätzlichen Austrag kleinerer Lackpartikel führen. Darüber hinaus kann es zu negativen Wechselwirkungen zwischen parallel arbeitenden Zerstäubern kommen. »Mit Hilfe der Simulation lässt sich die Kabinenluftströmung bereits im Vorfeld optimieren, sei es über die Zuluftbedingungen, die Realisierung von Einbauten oder andere Maßnahmen«, weiß Joachim Domnick.

Wenn es um die Anlagenplanung oder die Offline-Programmierung von Anlagen geht, gewinnt die Vorhersage der Schichtdickenverteilung zunehmend an Bedeutung. Sie lässt sich mit der numerischen Simulation ebenso berechnen wie die Partikelbahnen und der Auftragswirkungsgrad bei der Applikation. Weitere Anwendungen sind die Effektbildung bei Decklacken durch die dynamischen Vorgänge beim Tropfenaufprall, Filmbildung und Verlauf, die Strömung in Zerstäubern sowie Strömungsprobleme bei der Lackversorgung oder das Optimieren von Trockenprozessen.

Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Dr.-Ing. Joachim Domnick, Telefon: 0711/970-1762, Telefax: 0711/970-1035, E-Mail: jhd@ipa.fhg.de
Dr.-Ing. Andreas Scheibe, Telefon: 0711/970-1729, Telefax: 0711/970-1001, E-Mail: aas@ipa.fhg.de

Media Contact

Dipl.-Ing. Michaela Neuner idw

Alle Nachrichten aus der Kategorie: Automotive

Die wissenschaftliche Automobilforschung untersucht Bereiche des Automobilbaues inklusive Kfz-Teile und -Zubehör als auch die Umweltrelevanz und Sicherheit der Produkte und Produktionsanlagen sowie Produktionsprozesse.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automobil-Brennstoffzellen, Hybridtechnik, energiesparende Automobile, Russpartikelfilter, Motortechnik, Bremstechnik, Fahrsicherheit und Assistenzsysteme.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer