Raupenfraß bringt Blätter zum Leuchten

Die Larve einer Baumwolleule Spodoptera littoralis frisst auf einer Ackerschmalwandpflanze (Arabidopsis thaliana). Sandra Scholz und Monika Heyer / Max-Planck-Institut für chemische Ökologie

Wird eine Pflanze von Schädlingen attackiert, löst dies eine ganze Reihe von physiologischen Reaktionen in der Pflanze aus. Wesentliche Botenstoffe für die Verarbeitung von Verwundungsreizen innerhalb pflanzlicher Zellen sind Calciumionen. Sie steuern die Signalweiterleitung und somit indirekt die pflanzliche Verteidigung.

Wissenschaftlern des Max-Planck-Instituts für chemische Ökologie in Jena und des Instituts für Agrar- und Ernährungswissenschaften der Martin-Luther-Universität Halle ist es jetzt gelungen, die unmittelbaren Reaktionen von Pflanzen auf Verwundungen oder Raupenfraß sichtbar zu machen. Dafür verwendeten sie Pflanzen der Art Arabidopsis thaliana (Ackerschmalwand), die ein spezielles Protein bilden, das nach Bindung von Calciumionen zerfällt und freiwerdende Energie als Licht abstrahlen kann.

Die Lichtmenge gibt dabei die Calciumkonzentrationen in den Zellen der jeweiligen Bereiche der Blätter wider. Mit Hilfe einer hochempfindlichen Kameratechnik konnte der Calciumstrom in der Pflanze visuell verfolgt werden. So wurde deutlich, dass Calciumsignale systemisch auftreten und innerhalb kurzer Zeit von befallenen zu benachbarten Blättern wandern und schließlich die ganze Pflanze in Abwehrbereitschaft versetzen. (New Phytologist, Mai 2015).

Calcium ist ein universeller intrazellulärer Botenstoff. In Pflanzen werden viele physiologische Prozesse über Calciumionen vermittelt, insbesondere Reaktionen auf abiotischen und biotischen Stress, wie zum Beispiel Raupenfraß, der in Pflanzen eine Reihe von Verteidigungsmechanismen in Gang setzt. Wird ein Blatt von einem Insekt angefressen, wird das Verwundungssignal, das vom befallenen Blatt ausgeht, über Calciumionen an andere, nicht befallene Blätter weitergeleitet.

Um die Ausbreitung des Signals sichtbar zu machen, führten die Wissenschaftler Experimente mit transgenen Arabidopsis-Pflanzen durch, die gentechnisch so verändert worden waren, dass sie im Cytosol, dem flüssigen Zellinhalt, ein Protein exprimieren, das zerfällt und Lichtenergie freigibt, nachdem es Calciumionen gebunden hat. Die emittierte Lichtmenge korreliert dabei mit der jeweiligen Calciumionenkonzentration.

Somit werden intrazelluläre Änderungen der Calciumkonzentrationen direkt erfasst. Darüber hinaus können diese Prozesse mittels eines hochsensiblen Kamerasystems, das ladungsgekoppelte Bauteile (CCD, charge-coupled device) verwendet, in den Pflanzen visualisiert werden. „Es ist beeindruckend zu sehen, wie jeder Raupenbiss Blattbereiche aufleuchten lässt und die unmittelbare Reaktion der Pflanzen direkt sichtbar wird“, sagt Victoria Kiep, die zusammen mit Jyothilakshmi Vadassery den Großteil der experimentellen Arbeit durchführte.

Wichtig war den Wissenschaftlern der Nachweis, dass das Calciumsignal „systemisch“, das heißt nicht nur lokal, auftritt und innerhalb von wenigen Minuten von einem befallenen Blatt in benachbarte Blätter wandert, um dort die nachfolgenden Abwehrreaktionen auszulösen. Diesen Prozess konnten die Forscher direkt beobachten: „Es gelang uns, den dynamischen Prozess des durch Insektenfraß ausgelösten Impulses von intrazellulärem Calcium als sekundärem Botenstoff und dessen systemische Weiterleitung in nicht befallene Bereiche der Pflanze sichtbar zu machen“, fasst Axel Mithöfer, der Leiter der Projektgruppe „Physiologie der pflanzlichen Abwehr“ in der Abteilung Bioorganische Chemie, die Ergebnisse der Studie zusammen.

Wie die Calciumsignale in verschiedenen, voneinander entfernten Bereichen von Pflanzen ausgelöst werden, ist noch nicht abschließend geklärt. Die Forscher vermuten allerdings, dass elektrische Signale, die über das vaskuläre System von Gefäßpflanzen, sogenannte Leitbündel, transportiert werden, eine wesentliche Rolle spielen. Prinzipiell sind kaum Unterschiede bei den Calciumsignalen zu erkennen, die nach mechanischer Verwundung oder durch Raupenfraß ausgelöst wurden. Allerdings überraschte die Beobachtung, dass die Zugabe von Oralsekret aus Raupen die Weiterleitung des Calciumsignals in benachbarte Blätter im Experiment unterdrückte. Wichtig für die systemische Calciumsignalübertragung ist generell, dass das vaskuläre System des Blattes, also das pflanzliche Gefäßsystem für den inneren Transport von Wasser und Nährstoffen, verwundet wurde.

Die Wissenschaftler möchten nun in weiteren Experimenten herausfinden, welche Art von Verwundung das systemische Calciumsignal auslöst, ob dies beispielsweise auch durch Blattläuse oder Spinnmilben geschehen kann, die das pflanzliche Gewebe zum Saugen von Pflanzensaft anstechen und dabei nur leicht verletzen. Sie möchten untersuchen, wie die Signalweiterleitung in Gräsern aussieht, deren Leitbündelsystem anders aufgebaut ist. Außerdem interessiert sie die Frage, wie weit die Calciumsignale reichen und ob sie bis in die Wurzeln wandern können.

Die Studie veranschaulicht, dass das für das Auslösen pflanzlicher Abwehrreaktionen notwendige Calciumsignal in seiner räumlichen und zeitlichen Ausbreitung visuell verfolgt werden kann. Darüber hinaus konnte sie demonstrieren, dass es möglich ist, die Rolle des Botenstoffs Calciums in Pflanzen in verschiedenen physiologischen und ökologischen Zusammenhängen direkt in intakten Pflanzen zu untersuchen und so besser zu verstehen. [AO/AM]

Originalveröffentlichung:
Kiep, V., Vadassery, J., Lattke, J., Maaß, J.-P., Boland, W., Peiter, E., Mithöfer, A. (2015). Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytologist. doi: 10.1111/nph.13493
http://dx.doi.org/10.1111/nph.13493

Weitere Informationen:
Dr. Axel Mithöfer, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena, Tel. +49 3641 57-1263, E-Mail amithoefer@ice.mpg.de

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/downloads2015.html

http://www.ice.mpg.de/ext/1214.html?&L=1
http://www.ice.mpg.de/ext/520.html?&L=1 (Research Group Defense Physiology)

Media Contact

Angela Overmeyer Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer