Raupen der Wachsmotte haben Plastik zum Fressen gern: Fraunhofer LBF untersucht Abbauprozess

Raupe der Wachsmotte Galleria Melonella Foto: Fraunhofer LBF

Laut einer Anfang 2019 veröffentlichten Studie sind Larven der Wachsmotte Galleria Melonella in der Lage, Polyethylen (PE) zu fressen und mit einer bemerkenswert hohen Rate umzusetzen: 100.000 Raupen fressen demnach innerhalb einer Woche etwa 5,2 Kilogramm PE.

Dies würde vielversprechende Möglichkeiten zur Entsorgung und Beseitigung der großen Mengen von Plastikmüll eröffnen. Bevor diese bemerkenswerte Fähigkeit der Raupe allerdings technologisch genutzt werden kann, muss geklärt werden, ob sie das PE wirklich verdaut oder bloß zerkleinert und ausscheidet.

Eigene Software entmischt Raman-Spektren

Diese Frage hat das Team des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF im Rahmen des Projekts RauPE durch den Einsatz modernster, hochauflösender Raman-Mikroskopie beantwortet.

Im Zuge des Projektes hat das Team zudem eine dedizierte Software für die Raman-Mikroskopie an Gemischen in Python entwickelt. Mit Hilfe von maschinellem Lernen kann diese die überlagerten Raman-Spektren der Bestandteile entmischen.

Sie liefert einerseits die Spektren der Einzelkomponenten und andererseits deren örtliche Konzentration. So können die Forschenden auch geringe Konzentrationen eines Stoffes wie PE innerhalb eines komplexen Gemisches aufspüren.

Die Kombination von Raman-Mikroskopie und Software ist in der Lage, geringe Konzentrationen von Kunststoffen innerhalb eines Gemisches verschiedenster organischer Substanzen, wie sie innerhalb der Raupe vorliegen, räumlich darzustellen.

Dies ist dreidimensional mit einer Auflösung von bis zu einem Mikrometer (0,001 mm) möglich. Durch die Nutzung einer konfokalen Optik können die Wissenschaftlerinnen und Wissenschaftler Raupen zerstörungsfrei, d.h. weitgehend ohne Präparation untersuchen.

Kein biologischer Abbau von Polyethylen

Die bisherigen Ergebnisse verblüfften das Projektteam: Raupen fressen Löcher ins Polyethylen, nehmen geringe Mengen davon auf und verlieren gleichzeitig deutlich an Körpermasse. Wenn Löcher vorhanden sind, stoppen die Raupen die weitere Materialaufnahme. Die analytischen Messdaten zeigen, dass die Raupen das Polyethylen unverändert wieder ausscheiden.

»Dass Raupen herkömmliche Kunststoffe biologisch abbauen, bleibt zunächst weiterhin eine Vision. Für die wissenschaftliche Forschung wird es daher umso wichtiger, anfallende Kunststoffabfälle unter Berücksichtigung aller Stationen entlang der Wertschöpfungskette von Verpackungen zu vermeiden und wiederzuverwerten«, betont Dr. Bastian Barton, der das Forschungsprojekt am Fraunhofer LBF betreute.

Dringend benötigt würden verbesserte Konzepte und geeignete Technologien für die Herstellung von Post-Consumer-Kunststoffen mit hoher Qualität und konstanter Lieferbarkeit. Erst dann könnten bereits eingesetzte Kunststoffe massenhaft und für eine breite Produktpalette wiederverwendet werden, so Barton weiter.

Dr. Bastian Barton, bastian.barton@lbf.fraunhofer.de

http://www.youtube.com/watch?v=HfKly0o1CHc Video-Dokumentation

Media Contact

Anke Zeidler-Finsel Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Weitere Informationen:

http://www.lbf.fraunhofer.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer