Photokathoden aus Kupferoxid: Laserexperiment zeigt Ursachen für hohe Verluste auf

Ein erster Laserpuls (grün) regt die Elektronen im Cu2O an; Bruchteile von Sekunden später folgt ein zweiter Laserpuls (UV-Licht), um die Energie des angeregten Elektrons zu messen. M. Künsting /HZB

Kupferoxid (Cu2O) ist ein aussichtsreicher Kandidat für die zukünftige solare Energieumwandlung: Als Photokathode könnte der Halbleiter Kupferoxid mit Sonnenlicht Wasser elektrolytisch aufspalten und so den Brennstoff Wasserstoff erzeugen, der die Energie des Sonnenlichts chemisch speichert.
Theoretisch super, praktisch nicht.

Einkristallines Kupferoxid besitzt eine Bandlücke von 2 Elektronenvolt, die sehr gut zum solaren Energiespektrum passt. Perfekte Kupferoxid-Kristalle sollten unter Lichtbestrahlung theoretisch eine Spannung nahe 1,5 Volt bereitstellen.

Damit wäre das Material sehr gut geeignet als Top-Absorber in einer Stapelzelle für die solare Wasserspaltung und sollte einen Wirkungsgrad (Sonnenenergie zu chemischer Energie in Wasserstoff) von bis zu 18 Prozent ermöglichen.

Doch die realen Werte für die Photospannung liegen deutlich darunter und reichen nicht aus, um Kupferoxid effizient als Photokathode in einer Stapelzelle für die solare Wasserspaltung zu verwenden. Bisher wurden vor allem Verlustprozesse nahe der Oberfläche bzw. an Grenzschichten dafür verantwortlich gemacht.

Nun hat ein Team am HZB-Institut für Solare Brennstoffe diese Prozesse unter die Lupe genommen. Sie erhielten hochwertige Cu2O -Einkristalle von Partnern der US-Forschungseinrichtung California Institute of Technology (Caltech) und bedampften sie zusätzlich mit einer hauchdünnen, transparenten Schicht aus Platin.

Diese Platinschicht fungiert als Katalysator und steigert die Effizienz der Wasseraufspaltung. Sie untersuchten diese Proben im Femtosekunden-Laserlabor am HZB, um herauszufinden, welche Prozesse zum Verlust der Ladungsträger führen und insbesondere auch, ob diese Verluste im Innern der Einkristalle auftreten oder an der Grenzfläche zum Platin.

Dafür regte ein erster Laserpuls im sichtbaren grünen Bereich die Elektronen im Cu2O an; nur Bruchteile von Sekunden später folgte ein zweiter Laserpuls (UV-Licht), um die Energie des angeregten Elektrons zu messen. Mit dieser zeitaufgelösten Zwei-Photonen-Photoemissions-Spektroskopie (tr-2PPE) konnten sie den Hauptmechanismus von Photospannungsverlusten identifizieren.

„Wir beobachteten, dass die angeregten Elektronen sehr schnell in Defektzuständen gebunden werden, die in der Bandlücke selbst in großer Zahl existieren“, berichtet Erstautor Mario Borgwardt, der inzwischen seine Arbeit als Humboldt-Stipendiat am Lawrence Berkeley National Laboratory in den USA fortsetzt. Der Koordinator der Studie Dennis Friedrich führt aus: „Dies geschieht auf einer Zeitskala von unter einer Pikosekunde, also extrem schnell, vor allem im Vergleich zu der Zeit, in der Ladungen aus dem Inneren des kristallinen Materials an die Oberfläche diffundieren können.“

„Wir haben am Femtosekunden-Laserlabor des HZB sehr leistungsstarke experimentelle Methoden, um Energie und Dynamik von photoangeregten Elektronen in Halbleitern zu analysieren. Für Kupferoxid konnten wir zeigen, dass die Verluste kaum an den Grenzflächen zum Platin auftreten, sondern im Kristall selbst“, sagt der Initiator der Studie und Leiter der Femtosekunden-Spektroskopie am HZB, Rainer Eichberger.

„Mit diesen neuen Einblicken liefern wir einen ersten Beitrag zum Exzellenzcluster UniSysCat der Technischen Universität Berlin, an dem wir beteiligt sind“, betont Roel van de Krol, der das HZB-Institut für Solare Brennstoffe leitet. In UniSysCat stehen katalytische Prozesse im Fokus, die auf sehr unterschiedlichen Zeitskalen stattfinden: Während Ladungsträger auf Anregungen durch Licht extrem schnell reagieren (Femtosekunden bis Pikosekunden), benötigen chemische Prozesse wie die Katalyse viele Größenordnungen mehr Zeit (Millisekunden).

Für eine erfolgreiche Photokatalyse müssen jedoch beide Prozesse gemeinsam optimiert werden. Die vorliegenden Ergebnisse, die nun im renommierten Fachjournal Nature Communications publiziert sind, sind ein wichtiger Schritt auf diesem Weg.

Dr. Dennis Friedrich, 030 8062- 42923, friedrich@helmholtz-berlin.de
Dr. Rainer Eichberger, 030 8062- 42854, eichberger@helmholtz-berlin.de

Publiziert in Nature Communications 2019: Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes

Mario Borgwardt, Stefan T. Omelchenko, Marco Favaro, Paul Plate, Christian Höhn, Daniel Abou-Ras, Klaus Schwarzburg, Roel van de Krol, Harry A. Atwater, Nathan S. Lewis, Rainer Eichberger & Dennis Friedrich

Doi: 10.1038/s41467-019-10143-x

Media Contact

Dr. Antonia Rötger Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Informationen:

http://www.helmholtz-berlin.de/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer