Organentwicklung messen

Die komplexe Architektur der neuroepithelialen Organoide entsteht durch epitheliale Fusionsprozesse. Die Zellmembranen sind rot markiert, während die mit Flüssigkeit gefüllten Röhren in Grün dargestellt sind.
(c) Keisuke Ishihara / Ishihara et al., Nature Physics (2022)

Ein Forscherteam aus Dresden und Wien entdeckt Zusammenhang zwischen der Verbindung dreidimensionaler Gewebestrukturen und der Entstehung ihrer Architektur. Das ermöglicht selbstorganisierende Gewebe zu entwickeln, die menschliche Organe simulieren.

Die Organe im menschlichen Körper bestehen aus komplexen Netzwerken flüssigkeitsgefüllter Gefäße und Schlaufen. Sie sind unterschiedlich geformt und ihre dreidimensionalen Strukturen sind je nach Organ unterschiedlich miteinander verbunden. Während sich ein Embryo entwickelt, bilden die Organe ihre Form und Gewebearchitektur aus einer einfachen Gruppe von Zellen heraus. Bislang fehlten Konzepte und Instrumente, um zu untersuchen, wie Form und das komplexe Gewebenetzwerk während der Organentwicklung entstehen.

Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) und des MPI für Physik komplexer Systeme (MPI-PKS), beide in Dresden, sowie des Forschungsinstituts für Molekulare Pathologie (IMP) in Wien haben nun erstmals Messgrößen für die Organentwicklung definiert. Diese Studie liefert die notwendigen Werkzeuge, um das Gebiet der Organoide ¬– Miniaturorgane – in eine Ingenieurdisziplin zu transformieren und Modellsysteme für die menschliche Entwicklung zu erarbeiten.

Die Entwicklung eines Organismus erfordert ein komplexes Zusammenspiel von Zellen. Verschiedene Organe haben unterschiedliche geometrische Formen und verschieden verknüpfte dreidimensionale Strukturen, die die Funktion der mit Flüssigkeit gefüllten Gefäße und Schlaufen in den Organen bestimmen. Ein Beispiel dafür ist die verzweigte Netzwerkarchitektur der Niere, die die effiziente Blutfiltration unterstützt. Embryonalentwicklung in einem lebenden System zu beobachten, ist schwierig. Daher gibt es nur wenige Konzepte, die beschreiben, wie sich die Netzwerke aus flüssigkeitsgefüllten Gefäßen und Schlaufen entwickeln. Bisherige Studien haben gezeigt, wie Zellmechanik lokale Formveränderungen während der Entwicklung eines Organismus hervorruft. Es ist jedoch nicht klar, wie die Verbindungen zwischen den Geweben zustande kommen.

Der Forscher Keisuke Ishihara arbeitete zunächst in der Gruppe von Jan Brugués am MPI-CBG und MPI-PKS an dieser Frage, indem er bildgebende Verfahren und Theorie miteinander kombinierte. Später setzte er seine Arbeit in der Gruppe von Elly Tanaka am IMP fort. Zusammen mit seinem Kollegen Arghyadip Mukherjee, der ehemals in der Gruppe von Frank Jülicher am MPI-PKS forschte, und mit Jan Brugués arbeitete Keisuke mit Organoiden aus embryonalen Stammzellen der Maus, die ein komplexes Netzwerk von Epithelien bilden. Das sind Gewebe, welche Organe auskleiden und oft als Barriere fungieren. „Ich erinnere mich noch an den aufregenden Moment, als ich feststellte, dass sich einige Organoide in ein Gewebe mit mehreren Knospen verwandelt hatten. Sie ähnelten einer Weintraube aus. Die Veränderung der dreidimensionalen Architektur während der Entwicklung zu beschreiben blieb aber schwierig“, erinnert sich Keisuke und fügt hinzu: „Ich fand heraus, dass dieses organoide System erstaunliche innere Strukturen mit vielen Schlaufen oder Öffnungen erzeugt, die an einen Spielzeugball mit Löchern erinnern.“

Es hat viele Vorteile, die Entwicklung von Geweben an Organoiden zu erforschen: anders als gesamte Organismen können Organoide mit fortschrittlichen Mikroskopieverfahren beobachtet werden, sodass dynamische Veränderungen tief im Inneren des Gewebes sichtbar werden. Außerdem kann man sehr viele Organoide herstellen und ihre Umgebung kontrollieren, um den Verlauf ihrer Entwicklung zu beeinflussen. Die Forscher konnten somit die Form, die Anzahl und die Vernetzung des Epithels untersuchen. Sie beobachteten die Veränderungen in der inneren Struktur der Organoide im Zeitverlauf.

Keisuke fährt fort: „Wir entdeckten, dass die Verbindungen im Gewebe durch zwei verschiedene Prozesse entstehen: Entweder fusionieren zwei getrennte Epithelien oder ein einzelnes Epithel fusioniert sich selbst, indem es seine beiden Enden miteinander verbindet und dadurch eine Donut-förmige Schleife bildet.“ Die Forscher vermuten auf der Basis der Epitheloberflächen-Theorie, dass die Inflexibilität der Epithelien ein Schlüsselparameter ist, der die epitheliale Fusion und damit die Entwicklung der Gewebevernetzung steuert.

Jan Brugues, Frank Jülicher und Elly Tanaka, die die Studie leiteten, schlussfolgern: „Wir hoffen, dass unsere Ergebnisse zu einer neuen Sichtweise auf komplexe Gewebearchitekturen und das Zusammenspiel von Form und Netzwerkverbindungen bei der Organentwicklung führen werden. Unsere Studie wird dabei helfen, Organoide zu erforschen und weiterzuentwickeln. Außerdem zeigen wir, wie zelluläre Faktoren die Organentwicklung beeinflussen; das ist für Entwicklungszellbiologen, die sich für Organisationsprinzipien interessieren, interessant.“

Über das MPI-CBG
Das Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG) ist eines von über 80 Instituten der Max-Planck-Gesellschaft, einer unabhängigen gemeinnützigen Organisation in Deutschland. 600 Menschen aus 50 Ländern aus den verschiedensten Disziplinen arbeiten am MPI-CBG und lassen sich von ihrem Forscherdrang antreiben, um die Frage zu klären: Wie organisieren sich Zellen zu Geweben? Die Forschung des MPI-CBG deckt dabei eine möglichst weite Spanne an verschiedenen Komplexitätsstufen ab: auf der Stufe von molekularen Netzwerken, von Zellorganellen, von Zellen, von Gewebe, Organen oder auch auf mit Blick auf ganze Organismen. www.mpi-cbg.de

Über das IMP am Vienna BioCenter
Das Forschungsinstitut für Molekulare Pathologie (IMP) in Wien ist ein biowissenschaftliches Grundlagenforschungsinstitut, das maßgeblich von Boehringer Ingelheim gefördert wird. Mit über 200 Wissenschaftlern aus 40 Ländern widmet sich das IMP der wissenschaftlichen Erforschung grundlegender molekularer und zellulärer Mechanismen, die komplexen biologischen Phänomenen zugrunde liegen. Das IMP ist Teil des Vienna BioCenter, eines der innovativsten Zentren der Biowissenschaften in Europa mit 2.650 Mitarbeitern aus über 80 Ländern in sechs Forschungseinrichtungen, drei Universitäten und 40 Biotech-Unternehmen.
www.imp.ac.at, www.viennabiocenter.org

Max-Planck-Instituts für Physik komplexer Systeme (MPI-PKS)
Ziel des MPI-PKS ist es, die Forschung an komplexen Systemen international entscheidend mitzuprägen und zu fördern. Außerdem werden die Innovationen auf dem Gebiet komplexer Systeme möglichst rasch und effizient an den wissenschaftlichen Nachwuchs der Universitäten weitergegeben. Das Konzept fußt auf zwei Säulen: der Forschung im Haus und einem Gästeprogramm. Letzteres umfasst individuelle Stipendien für Gastaufenthalte am Institut sowie ein umfangreiches Workshop- und Seminarprogramm mit durchschnittlich 20 Veranstaltungen pro Jahr.

Die Forschungsgruppen von Jan Brugués und Frank Jülicher sind außerdem dem Zentrum für Systembiologie Dresden (CSBD) und dem Exzellenzcluster „Physics of Life“ (PoL) der TU Dresden angegliedert. Das CSBD ist eine Kooperation zwischen dem MPI-CBG, dem MPI-PKS und der TU Dresden. In dem interdisziplinären Zentrum arbeiten Physiker, Informatiker, Mathematiker und Biologen zusammen, um zu verstehen, wie Zellen ihr Verhalten koordinieren, um Gewebe und Organe einer bestimmten Form oder Funktion zu bilden. Das PoL befasst sich mit grundlegenden Organisationsprinzipien lebender Materie durch eine enge Wechselwirkung von Experiment und Theorie, kombiniert mit rechnergestützter Modellierung, Simulation und interaktiver Mikroskopie.

Wissenschaftliche Ansprechpartner:

Dr. Jan Brugués
+49 (0) 351 210-2600
brugues@mpi-cbg.de

Dr. Elly Tanaka
+43 (0) 1 79730-3200
elly.tanaka@imp.ac.at

Originalpublikation:

Keisuke Ishihara, Arghyadip Mukherjee, Elena Gromberg, Jan Brugués, Elly M. Tanaka, Frank Jülicher: “Topological morphogenesis of neuroepithelial organoids”, Nature Physics. (2022) doi: 10.1038/s41567-022-01822-6

https://www.mpi-cbg.de/de/home/

Media Contact

Katrin Boes Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Zellbiologie und Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer