Neurogenetik: Das Probieren studieren

Eine Katze liegt in der Sonne und döst. Irgendwann steht sie auf, dreht eine Runde durch den Garten und kehrt anschließend an ihren Schlafplatz zurück. Gähnend legt sie sich hin und schläft schnell wieder ein. Warum ist sie eigentlich aufgestanden? Hat ihr die Sonne zu stark auf den Pelz gebrannt? Oder hat der Gesang einer Amsel ihren Jagdtrieb geweckt? Oder haben einfach ein paar Neuronen in ihrem Gehirn gefeuert und so – rein zufällig – ein Verhaltensmuster in Gang gesetzt? Wissenschaftler sprechen in solch einem Fall von einer „initialen Aktivität“.

Wie neues Verhalten entsteht

Was darunter zu verstehen ist? „Die initiale Aktivierung antwortet nicht auf einen Reiz oder ein anderes Verhalten, sondern sucht nach einer Antwort, nach noch unbekannten Wirkungen, die neue Möglichkeiten eröffnen, erklärt Martin Heisenberg. Heisenberg hatte bis vor Kurzem den Lehrstuhl für Neurobiologie und Genetik an der Universität Würzburg inne; inzwischen ist er Seniorprofessor am Rudolf-Virchow-Zentrum. In seinen langjährigen Experimenten mit der Taufliege Drosophila konnte er nachweisen, dass es die initiale Aktivität tatsächlich gibt. In den kommenden fünf Jahren will er diese Aktivität intensiver untersuchen.

Um ein Ausprobieren geht es bei der initialen Aktivierung laut Heisenberg. Im Ausprobieren erkläre sich das Verhalten nicht aus seinen Ursachen, sondern aus seinen Konsequenzen. „Das Tier muss seinen Zustand vor und nach dem Verhaltensakt mit einem erstrebten Zustand vergleichen. Verringert sich der Abstand zwischen dem aktuellen Zustand und dem erstrebten, setzt das Tier das Verhalten fort, vergrößert er sich, bricht es das Verhalten ab und probiert etwas anderes.“ Beim Ausprobieren könne das Tier etwas über die Folgen seines Verhaltens lernen und damit unter Umständen später unangenehmen Situationen zuvorkommen.

Dass ein Lebewesen „von sich aus“ etwas tut, das war in der Wissenschaft lange Zeit umstritten. „Nach dem Motto: ‚Von nichts kommt nichts!‘ hat die Verhaltensforschung versucht, die initiale Aktivität als mangelndes Wissen des Beobachters wegzuerklären“, kritisiert Heisenberg. Nach dieser Vorstellung kann nur ein Reiz ein Verhalten verursachen, so wie beispielsweise ein leichter Schlag mit einem Hämmerchen auf eine Stelle unterhalb der Kniescheibe eine Streckbewegung des Beins auslöst.

Das Forschungsprojekt

Wie häufig treten solche Verhaltensaktivitäten auf? Welche Faktoren beeinflussen sie? Lassen sich Gene und Neurone identifizieren, die diese Aktivitäten ermöglichen oder regulieren? Gibt es Gehirnregionen, die keinen Einfluss darauf haben? Auf Fragen wie diese werden Heisenberg und der Physiker Reinhard Wolf gemeinsam in dem neuen Forschungsprojekt nach Antworten suchen.

Antwort geben könnten die Fliegen zum Beispiel in einer Art Flugsimulator. „Die Fliege wird dafür mit ihrem Rücken an einem Drehmoment-Messgerät fixiert, das anzeigt, ob sie nach links, nach rechts oder geradeaus fliegen möchte“, schildert Heisenberg den Versuchsaufbau. Ein senkrechter schwarzer Balken zum Beispiel dient dem Insekt zur Orientierung, quasi als Fixpunkt in der Landschaft, auf den sie zufliegt. Der Balken ist beweglich: Zeigt das Messgerät an, dass die Fliege nach links abdreht, wandert er dementsprechend nach rechts – und umgekehrt.

Was aber passiert, wenn der Balken sich falsch, nämlich genau in die entgegengesetzte Richtung bewegt, bei einem Flugmanöver nach rechts ebenfalls nach rechts? Dann muss die Fliege ihr Verhalten ändern: „Sie lernt durch Ausprobieren, dass sie die Richtung ihrer Flugmanöver ins Gegenteil wenden muss um auf den Balken zu fliegen zu können“, sagt Heisenberg. Wie lange braucht sie dafür? Wird das einzelne Tier schneller, wenn es das Experiment wiederholte Male durchführt? Verfolgen verschiedene Tiere unterschiedliche Strategien? Und was passiert, wenn sich der Balken plötzlich wieder normal bewegt? „Wir werden in den Flugspuren der einzelnen Tiere suchen, ob man erkennen kann, wann ‚der Groschen gefallen ist‘“, so der Neurogenetiker.

In der Hitzekammer

Ein anderes Experiment untersucht die so genannte „gelernte Unkontrollierbarkeit“. Dafür setzen die Wissenschaftler die Fliege in eine kleine Kammer. Dort wird sie in einem ersten Versuch mit Hitze „bestraft“, wenn sie länger als zwei Sekunden still sitzt. In einem zweiten Versuch ist die Strafe an das Betreten einer Hälfte der Kammer gekoppelt. „Die Fliege kann beide Bedingungen durch Ausprobieren entschlüsseln und dann die Hitze vermeiden“, sagt Heisenberg.

Was aber, wenn die Fliege im ersten Versuchsdurchgang rein zufällig auftretenden Hitzeimpulsen ausgesetzt war, die sie somit nicht selbst beeinflussen konnte? Dann fällt es ihr anschließend schwerer, die Hälfte der Kammer zu identifizieren, in der sie sich straflos aufhalten kann. Anscheinend hat die Fliege gelernt, dass sie auf die Hitzepulse keinen Einfluss hat.

„Wir interpretieren diese Verhaltenseigenschaft als ‚gelernte Unkontrollierbarkeit‘, als den ‚Notschalter‘ für das Ausprobieren, erklärt Heisenberg. Wenn ein Tier bei wichtigen äußeren Reizen alles daran setzt diese mit seinem Verhalten zu beeinflussen, muss es einen Zeitpunkt geben, an dem das System abschaltet nach dem Motto: Jetzt ist es genug, es hat keinen Zweck weiter zu probieren! Überraschenderweise tritt dieses Phänomen bevorzugt bei Weibchen auf und kann durch Antidepressiva, die die Serotonin-Konzentration an bestimmten Synapsen erhöhen, vermindert werden.

Ziele des Forschungsprojekts

Die Rolle des Serotonins in diesem Prozess wollen Heisenberg und Wolf in den kommenden Jahren genauer untersuchen. Sie interessiert unter anderem, ob Serotonin in den Gehirnen der Weibchen generell – oder vielleicht nur im Zustand der gelernten Unkontrollierbarkeit – reduziert ist. Beschränkt sich dieses Phänomen auf die Hitzekammer oder betrifft es auch andere Lernvorgänge und Zusammenhänge? Und lässt es sich möglicherweise beim Männchen künstlich verursachen – durch eine Verminderung der Serotonin-Konzentration im Gehirn?

Von ihren Untersuchungen versprechen sich die Wissenschaftler Anstöße für weitere pharmakologische Versuche an der Fliege und Anregungen zur Übertragung dieser Erkenntnisse auf die Medizin, beispielsweise zur Behandlung von Depression und der Aufmerksamkeitsdefizit-/Hyperaktivitäts-Störung ADHS. Auch für die Entwicklung autonomer Roboter könnten ihre Ergebnisse von Nutzen sein.

Das DFG-Projekt

1,2 Millionen Euro hat die Deutsche Forschungsgemeinschaft (DFG) Martin Heisenberg für seine Forschung zur initialen Aktivität im Rahmen des Reinhart Koselleck-Programms bewilligt. Fünf Jahre lang kann er damit nun arbeiten. Reinhardt Koselleck-Projekte stehen nach Auskunft der DFG für mehr Freiraum für Forschung. Wissenschaftlern, die sich durch besondere Leistungen ausgewiesen haben, soll damit die Möglichkeit eröffnet werden, „in hohem Maße innovative und im positiven Sinne risikobehaftete Projekte“ durchzuführen.

Namensgeber des Programms ist der im Jahr 2006 verstorbene Reinhart Koselleck, einer der bedeutendsten deutschen Historiker des 20. Jahrhunderts, der in Deutschland zu den Begründern der modernen Sozialgeschichte gehört.

Kontakt

Prof. Dr. Martin Heisenberg, T (0931) 31-84451,
heisenberg@biozentrum.uni-wuerzburg.de

Media Contact

Robert Emmerich Uni Würzburg

Weitere Informationen:

http://ww.uni-wuerzburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer