Nature Materials: Blitzschneller Umschaltmechanismus für Magnetketten

Mit einem Laserpointer einen Magneten vom Kühlschrank zu lösen, hört sich aufs Erste unwirklich an. Doch ziemlich genau dieses Kunststück hat ein Physiker-Team der Universität Stuttgart und aus Florenz unter der Leitung von Sofja Kovalevskaja-Preisträger Dr. Lapo Bogani vollbracht.

Den Wissenschaftlern gelang es, die Eigenschaften winziger Nanomagnetketten optisch mit Hilfe von Laserstrahlen zu beeinflussen. Dadurch entmagnetisieren sich die Moleküle nicht zufällig, sondern können blitzschnell umgepolt werden. Der so genannte Kickoff-Mechanismus soll die Anwendung von Nanomagnetketten zum Beispiel in der Krebstherapie oder den Informationstechnologie voranbringen und könnte sogar erklären, wie sich ein von außen stimulierter Meinungswechsel in sozialen Netzwerken wie Facebook verbreiten kann. Über die Forschungsergebnisse berichtete die Zeitschrift Nature Materials in ihrer Ausgabe vom 2. Dezember.*)

Nanomagnete sind nur einen millionsten Teil eines Millimeters groß und umfassen im Gegensatz zu konventionellen Magneten nur wenige Atome, deren Magnetismus rein molekularen Ursprungs ist. Die Eigenschaften der Winzlinge lassen sich maßgeschneidert synthetisieren, was sie theoretisch für vielerlei Anwendungen interessant macht. Daher suchen Forscher weltweit unter Hochdruck nach den Mechanismen, die die magnetischen Eigenschaften der winzigen Magnete von außen gezielt beeinflussen.

Das internationale Forscherteam aus Stuttgart und Florenz ist dieser Fragestellung theoretisch und experimentell nachgegangen. Dabei ist die Idee denkbar einfach: Mit Laserlicht von geringer Energie werden einzelne Moleküle in den geordneten magnetischen Ketten angeregt. Dadurch verringern sich deren Wechselwirkungen zu ihren direkten Nachbarn, welche sie magnetisch ausgerichtet halten. Dies führt dazu, dass sich diese Moleküle schneller umpolen können und somit der natürliche dynamische Entmagnetisierungsprozess, also die zufällige Ausrichtung der magnetischen Momente in den Ketten, schneller angestoßen wird.

Dies hat zur Folge, dass sich die Ketten unter Lichteinwirkung von magnetisch auf nichtmagnetisch optisch schalten lassen. Damit realisiert sich der Traum von Wissenschaftlern und Ingenieuren, Magnete durch Licht ein und auszuschalten. Das Experiment der Stuttgarter und Florentiner Physiker kann man sich so vorstellen, wie wenn mit einem Laserpointer ein Magnet angestrahlt wird, der im Anschluss nicht mehr magnetisch ist.

Das diesem Entmagnetisierungsprozess zu grundlegende Modell ist weitbekannt und findet Anwendung in zahlreichen Disziplinen, die auf den ersten Blick wenig miteinander gemein haben. Das Spektrum reicht von sozialen Netzwerkdynamiken über die Ausbreitung von Informationen im Nervensystem bis hin zu Chemischen Reaktionsabläufen. Die entscheidende Frage in all diesen Disziplinen ist dabei, wie man durch gezielte Stimulation die Entwicklungsgeschwindigkeiten solcher Prozesse von außen kontrollieren kann.

Der von den Stuttgarter Physikern so genannte „KickOff“-Mechanismus verringert die Trägheit eines Systems gegenüber externen Stimuli und beschleunigt die Entwicklung des gesamten Systems. Dies dürfte in allen genannten Gebieten Forschungsideen für neue Mechanismen zur Beeinflussung der zeitlichen Evolution von Systemen anregen. Möglicherweise kann das Verfahren auch zum „Triggern“ von Polymerisationsprozessen eingesetzt werden oder dazu beitragen, den schnellen Meinungswechsel in sozialen Netzwerken wie Facebook besser zu verstehen. Auch hier handelt es sich um Kettenreaktion, die man simulieren kann, indem die Wechselwirkungen der Nutzer untereinander beziffert und untersucht, wie sich eine neue Information von außen verbreitet. Die Beantwortung dieser Fragestellungen wird die Zukunft weisen, doch der Startschuss dafür ist mit dem „KickOff“-Mechanismus des deutsch-italienischen Forscherteams gefallen.

Ihre Ansprechpartner:
Dr. Lapo Bogani, Universität Stuttgart, 1. Physikalisches Institut, Tel. 0711/685-64907,
E-Mail: lapo.bogani (at) pi1.physik.uni-stuttgart.de
Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,
E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

*) Originalpublikation:
Eric Heintze, Fadi El Hallak, Conrad Clauß, Angelo Rettori, Maria Gloria Pini, Federico Totti, Martin Dressel and Lapo Bogani: “Dynamic control of magnetic nanowires by light-induced domain-wall kickoffs”, Nature Materials DOI 10.1038/NMAT3498 or

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3498.html

Media Contact

Andrea Mayer-Grenu idw

Weitere Informationen:

http://www.uni-stuttgart.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer