Nano-Origami mit Erbgut-Molekülen

In der aktuellen Ausgabe der Zeitschrift Science berichten sie über eine Reihe von Experimenten in der sie DNA Origami-ähnlich in dreidimensionale Objekte falten konnten, inklusive einer kugelförmigen Gerüstkonstruktion mit nur 50 Nanometer Durchmesser.

„Unser Ziel war es herauszufinden, ob wir DNA so programmieren können dass sie sich selbst in Formen mit vorgegebenen Krümmungen und Windungen in der Größenordnung weniger Nanometer anordnet,“ erklärt der Biophysiker Hendrik Dietz, Professor an der Technischen Universität München. Er arbeitete an diesen Experimenten zusammen mit Professor William Shih und Dr. Shawn Douglas von der Harvard University.

„Es hat funktioniert,“ fügt er hinzu, „und wir können jetzt viele verschiedene dreidimensionale Bauteile im Nanobereich herstellen. Etwa Zahnräder oder gebogene Rohre und Kapseln.“ Diese Bauteile hoffen die Forscher zu größeren, komplexeren Funktionseinheiten kombinieren zu können.

Als Medium für Konstruktionen im Nanobereich hat DNA zwei Vorteile: Sie ist ein intelligenter Werkstoff, nicht nur robust und zugleich flexibel sondern auch programmierbar. Zudem ist sie durch jahrzehntelange Arbeit sehr gut erforscht. Die elementaren Werkzeuge die Dietz, Douglas und Shih anwenden sind die programmierbare Selbstorganisation – das Leiten der DNA Stränge in bestimmte vorgegebene Bündel von quer verknüpften Doppelhelizes – und gezieltes Einfügen und Herausnehmen von Basenpaaren. Letztere geben in solchen Bündeln die gewünschte Windung oder Krümmung vor. Die Forscher können nicht nur festlegen ob die Windung rechts oder linksherum erfolgen soll sondern sie können die entstehenden Formen präzise und quantitative kontrollieren und ereichen extrem enge Krümmungsradien von 6 Nanometern.

Die Werkzeuge die sie entwickelt haben beinhalten eine graphische Software die hilft, bestimmte Design-Konzepte in die dafür nötige DNA-Programmierung zu übersetzen. Dreidimensionale Objekte werden durch die Feinabstimmung von Anzahl, Anordnung und Länge der Helizes erzeugt.

In ihrer Publikation präsentieren die Wissenschaftler eine große Auswahl an Nanogebilden und beschreiben im Detail wie sie geplant, hergestellt und validiert wurden. „Viele fortgeschrittene, makroskopische Maschinen benötigen seltsam geformte Teile um zu funktionieren,“ sagt Dietz, „und wir haben die Werkzeuge sie zu fertigen. Aber momentan können wir keine so komplizierten Gebilde generieren wie die Beine einer Ameise oder – noch viel kleiner – 10 Nanometer große chemische Fabriken wie ein Enzym. Wir erwarten einen großen Nutzen, wenn wir nur miniaturisierte Maschinen im Nanobereich bauen könnten, aus Materialien die zuverlässig in unseren Körperzellen arbeiten – aus Biomolekülen wie DNA.“

Originalpublikation:
Folding DNA into Twisted and Curved Nanoscale Shapes,
Hendrik Dietz, Shawn M. Douglas, und William M. Shih, Science, 7. August 2009.
Kontakt:
Prof. Hendrik Dietz
Technische Universität München
Physik-Department
James-Franck-Str. 1, D 85748 Garching
Tel. +49 89 289 12539
Fax: +49 89 289 12523
E-mail: dietz@ph.tum.de

Media Contact

Dr. Ulrich Marsch idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer