Motormoleküle von Makrophagen regulieren Zellinvasion

Die Arbeitsgruppe um Stefan Linder am Universitätsklinikum Hamburg-Eppendorf untersucht die invasive Wanderung von Makrophagen und entwickelt neue molekulare Werkzeuge, um das Eindringen dieser Zellen in Gewebe gezielt zu verändern.

Auf ihren Patrouillengängen durch den Körper müssen Makrophagen teilweise extreme, aber dennoch genau regulierte Formveränderungen vornehmen. Unterstützend wirkt dabei ihre Fähigkeit zum Abbau der sogenannten extrazellulären Matrix, die Zellen im Gewebe miteinander verbindet. In beiden Fällen spielt das Zytoskelett der Makrophagen, ein hochdynamisches Netzwerk aus Proteinfasern, eine entscheidende Rolle. Zytoskelett-Fasern werden als „zelluläres Schienensystem“ benutzt, auf dem winzige Motoren Wirk- und Botenstoffe aus dem Zellinneren gezielt zu Orten des Bedarfs auf der Zelloberfläche transportieren. Eine wichtige Gruppe dieser transportierten Wirkstoffe sind die Matrix-Metalloproteasen (MMPs), die den Abbau der Matrix und damit das Eindringen der Makrophagen in Gewebe erlauben. Eine Schlüsselstellung nimmt hierbei die Protease MT1-MMP ein.

Es hat sich gezeigt, dass eine generelle Hemmung von MMPs im Gewebe bei Patienten schwere Nebenwirkungen hervorruft. Dieser Ansatz ist aber nicht nur zu breit angelegt, er greift auch zu spät, nämlich erst nach der Freisetzung der Proteasen ins Gewebe bzw. an der Zelloberfläche. Die Arbeitsgruppe um Prof. Dr. Linder befasst sich daher mit den bisher weitgehend unerforschten Mechanismen des Transports von spezifischen MMPs, und insbesondere von MT1-MMP, innerhalb der Zelle.

Der Gruppe gelang dabei der Nachweis, dass MT1-MMP vor ihrem Erscheinen an der Zelloberfläche über das Tubulin-Zytoskelett transportiert wird. Aus der Vielzahl der hierfür möglichen Moleküle konnten drei Motoren identifiziert werden, die für diesen Transport entscheidend sind. Damit stehen erstmals spezifische Zielmoleküle zur Verfügung, die eine therapeutische Behandlung der MT1-MMP Aktivität noch vor der Freisetzung der Protease auf der Zelloberfläche ermöglichen könnten.

Zudem ist MT1-MMP nicht gleichmässig auf der Oberfläche von Makrophagen verteilt, sondern wird bevorzugt an bestimmten Orten, den sogenannten Podosomen („Zellfüsschen“), angereichert. Der Gruppe gelang weiterhin der Nachweis, dass MT1-MMP über das Zytoskelett gezielt zu Podosomen transportiert wird. Eine Hemmung der MT1-MMP transportierenden Motoren resultierte folgerichtig auch in einer Hemmung des Matrix-Abbaus durch Podosomen. Damit wurde erstmals eine dynamische Verbindung zwischen einer Matrix-abbauenden Protease und ihrem bevorzugten Wirkort auf der Zelloberfläche belegt.

Die Gruppe um Prof. Linder arbeitet derzeit an der Identifikation weiterer Regulatoren des MT1-MMP Transports sowie an der Entwicklung von Hemmstoffen, die diesen Transport, insbesondere im Kontext der Tumor-Metastasierung, beeinflussen. Prof. Dr. Stefan Linder arbeitet am Institut für Medizinische Mikrobiologie, Virologie und Hygiene des Universitätsklinikums Hamburg-Eppendorf und leitet dort die Abteilung für Zelluläre Mikrobiologie.

Kontakt:
Prof. Dr. Stefan Linder, Universitätsklinikum Hamburg-Eppendorf, Institut für Medizinische Mikrobiologie, Virologie und Hygiene
E-Mail: s.linder@uke .de
http://www.uke.de/institute/infektionsmedizin/index_56522.php
Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit über 90.000 Euro.Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 190 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer