Mikrospinne

Mikromotor aus einer halb aus Gold, halb aus Siliciumdioxid bestehenden Kugel (c) Wiley-VCH<br>

Noch ist es Science Fiction, aber vielleicht in absehbarer Zukunft Realität: Nanoroboter, die im Körper Tumorzellen zerstören und Verstopfungen aus unseren Arterien kratzen oder mikroskopisch kleine „Fabriken“, in denen Nanomaschinen winzige Strukturen für miniaturisierte Bauteile herstellen.

Nanomotoren könnten Pharmaka rascher zu bestimmten Zielorganen transportieren oder Analytmoleküle durch die winzigen Kanäle von Diagnostiksystemen im Mikrochipformat lotsen. Ayusman Sen und seine Mitarbeiter von der Pennsylvania State University (USA) beschreiben in der Zeitschrift Angewandte Chemie nun einen neuen Typ Mikromotor, der durch eine Polymerisationsreaktion angetrieben wird und wie eine Mikrospinne feine Fäden hinterlässt.

Die Motoren bestehen aus knapp einen Mikrometer großen Kügelchen, halb aus Gold, halb aus Siliciumdioxid. Auf der Siliciumdioxid-Oberfläche lassen sich Katalysatormoleküle (ein so genannter Grubbs-Katalysator) anknüpfen, die Polymerisationen katalysieren. Sen und sein Team verwenden Norbornen als Monomer. Unter Ringöffnung reiht der Katalysator diese Monomere zu langen Kettenmolekülen aneinander.

Sobald die Reaktion anläuft, kommen die Kügelchen in der umgebenden Flüssigkeit ordentlich in Fahrt. Aber wie kann eine solche Reaktion eine Bewegung hervorrufen? Erfolgsgeheimnis sind die zwei unterschiedlichen Hälften der Kügelchen. Nur auf der Seite, auf der die Katalysatormoleküle sitzen, wird Monomer verbraucht. Die Monomerkonzentration nimmt ab und wird hier geringer als um die katalysatorfreie Goldhälfte herum. Diese Konzentrationsunterschiede erzeugen einen osmotischen Druck, der einen winzigen Strom von Lösungsmittelmolekülen in Richtung der Stellen mit höherer Monomerkonzentration hervorruft, also in Richtung Goldhälfte. Diese Mini-Strömung treibt den kleinen Motor in die entgegengesetzte Richtung.

Körperzellen, beispielsweise in der Embryogenese, und bestimmte einzellige Lebewesen können Konzentrationsgradienten von Botenstoffen oder Nährstoffen folgen, ein Phänomen, das man Chemotaxis nennt. Zu einer solch gerichteten Bewegung sind auch die neuen kleinen Motoren fähig. Die Wissenschaftler verwendeten mit Norbornen gefüllte Gele, aus denen das Norbornen-Monomer langsam heraussickerte. Die Mikromotoren „spüren“ dies und bewegen sich auf das Gel zu, folgen also wie Einzeller einem Nährstoffgradienten. Der Grund liegt darin, dass die Polymerisation umso rascher läuft, je mehr Monomer sich in der Nähe des Katalysators befindet. Umso stärker wird aber auch die lokale Strömung, die das Kügelchen antreibt.

Es ist also möglich, die Mikromotoren auf ein Ziel hin zu lenken. In einem Lösungsmittel, in dem das entstehende Polymer unlöslich ist, könnte dieses entlang der zurückgelegten Strecke abgelagert werden – wie eine Mikrospinne, die ein Netz webt. Die Mikromotoren könnten auch so ausgelegt werden, dass sie Fehlstellen und Risse detektieren, sich dorthin bewegen und diese mit Polymer verschließen.

Angewandte Chemie: Presseinfo 34/2011

Autor: Ayusman Sen, Pennsylvania State University, University Park (USA), http://research.chem.psu.edu/axsgroup/dr_sen.html

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201103565

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Weitere Informationen:

http://presse.angewandte.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer