Metallorganische Netzwerke werden flexibel

Julian Keupp und Rochus Schmid (rechts) vom Autorenteam betrachten die Darstellung eines Metal-Organic Framework.
© RUB, Marquard

Experiment und Computersimulationen erschließen neue Anwendungsfelder.

Materialien aus anorganischen und organischen Komponenten können das Beste aus zwei Welten vereinen: Unter bestimmten Umständen sind dreidimensionale Netzwerke aus metallorganischen Verbindungen, die sogenannten Metal-Organic Frameworks, kurz MOFs, so geordnet aufgebaut wie Kristalle und zugleich porös und flexibel verformbar.

Das weckt Hoffnungen auf intelligente Materialien für energiesparende technische Anwendungen. Allerdings sind bisher nur wenige flexible MOFs bekannt. Ein Forschungsteam der Ruhr-Universität Bochum (RUB) und der Technischen Universität München (TUM) hat mittels Experimenten und Simulationen herausgefunden, was MOFs flexibel machen kann und warum:

Sie tricksten das System aus, indem sie durch geschickte chemische Manipulationen eine Vielzahl von energetisch gleichartigen Anordnungen in der kristallinen Ordnung ermöglichten. Sie berichten in der Zeitschrift Angewandte Chemie vom 14. September 2020.

Schockabsorber und chemische Helfer

Das Anwendungspotenzial von MOFs wurde erst vor rund 20 Jahren entdeckt; inzwischen sind fast 100.000 solcher hybridischen porösen Materialien bekannt. Besonders auf flexiblen MOFs ruhen große Hoffnungen für technische Anwendungen. So könnten sie als Schockabsorber auf plötzlichen hohen Druck reagieren, indem sie ihre Poren schließen und an Volumen verlieren, sich also plastisch verformen. Oder sie könnten chemische Stoffe voneinander trennen wie ein Schwamm, indem sie sie in ihre Poren aufnehmen und bei Druck wieder abgeben. „Das wäre wesentlich weniger energieaufwändig als das übliche Verfahren der Destillation“, erklärt Prof. Dr. Rochus Schmid, Leiter der Computational Materials Chemistry Group an der RUB. Allerdings sind bisher nur wenige solcher flexiblen MOFs bekannt.

MOFs unter Druck

Um den zugrundeliegenden Mechanismen innerhalb solcher Materialien auf den Grund zu gehen, hat das Münchner Team ein bereits gut bekanntes MOF experimentell genauer untersucht. Dazu setzen die Forscherinnen und Forscher es einem gleichmäßigen Druck von allen Seiten aus und beobachteten währenddessen mittels Röntgenstrukturanalyse, was im Inneren vor sich geht.„Wir wollten wissen, wie sich das Material unter Druck verhält und welche chemischen Faktoren die Triebkraft der Phasenübergänge zwischen dem offenporigen und dem geschlossenporigen Zustand bilden“, so Gregor Kieslich, Leiter der Arbeitsgruppe Crystal Chemistry of Functional Materials der TUM.

Es zeigte sich im Experiment, dass die geschlossenporige Form nicht stabil ist; unter Druck verliert das System seine kristalline Ordnung, kurz gesagt: Es geht kaputt. Nicht so aber eine Variante derselben Grundstruktur: Befestigte das Team flexible Seitenketten aus Kohlenstoffatomen an den organischen Verbindungsstücken des MOF, die in die Poren hineinragen, ließ sich das Material intakt zusammendrücken und nahm bei nachlassendem Druck seine ursprüngliche Form wieder an. Die Ärmchen aus Kohlenstoff machten aus dem nicht flexiblen ein flexibles MOF.

Das Geheimnis der Phasenumwandlung

Die Gründe dafür untersuchte das Bochumer Team computerchemisch mittels Molekulardynamik-Simulationen. „Wir konnten zeigen, dass das Geheimnis in den Freiheitsgraden der Seitenketten liegt, der sogenannten Entropie“, sagt Rochus Schmid. „Jedes System in der Natur strebt größtmögliche Entropie an, vereinfacht gesagt, die größtmögliche Zahl an Freiheitsgraden die Energie des Systems zu verteilen.“

„Die Vielzahl möglicher Anordnungen der Kohlenstoffärmchen in den Poren sorgt dafür, dass die offenporige Form des MOF entropisch stabilisiert wird“, so Schmid weiter. „Damit wird eine Phasenumwandlung, von der offen- in die geschlossenporige Form und wieder zurück ermöglicht, während MOFs ohne Ärmchen beim Zusammendrücken kaputtgehen.“ Um ein so großes System aus sehr vielen Atomen berechnen und die vielen möglichen Konfigurationen der Ärmchen in den Poren absuchen zu können, entwickelte das Team eigens ein genaues, aber numerisch effizientes theoretisches Modell für die Simulation.

„Das zentrale Ergebnis der Studie ist die Identifikation einer weiteren chemischen Möglichkeit, durch das thermodynamische Verhalten der von uns eingeführten Seitengruppen das makroskopische Antwortverhalten eines intelligenten Materials zu steuern und zu verändern“, sagt Gregor Kieslich. „Unsere Ergebnisse eröffnen damit neue Wege, strukturelle Phasenumwandlungen in porösen MOFs gezielt zu erzeugen“.

Originalveröffentlichung

Pia Vervoorts, Julian Keupp, Andreas Schneemann, Claire L. Hobday, Dominik Daisenberger, Roland A. Fischer, Rochus Schmid, Gregor Kieslich: Configurational entropy driven high‐pressure behavior of a flexible metal‐organic framework, in: Angewandte Chemie, 2020, DOI: 10.1002/ange.202011004, https://onlinelibrary.wiley.com/doi/10.1002/ange.202011004

Förderung

Die Arbeiten wurden gefördert von der Deutschen Forschungsgemeinschaft im Rahmen der Forschungsgruppe 2433 „Switchable MOFs“ sowie durch einen Start-up-Grant im Rahmen des Schwerpunktprogramms 1928 „Coordination Networks: Building Blocks for Functional Systems“, den Fonds der Chemischen Industrie und die University of Edinburgh.

Pressekontakt

Prof. Dr. Rochus Schmid
Computational Materials Chemistry Group
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 24166
E-Mail: rochus.schmid@rub.de

Dr. Gregor Kieslich
Crystal Chemistry of Functional Materials
Technische Universität München
Tel.: +49 89 289 13143
E-Mail: gregor.kieslich@tum.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Rochus Schmid
Computational Materials Chemistry Group
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 24166
E-Mail: rochus.schmid@rub.de

Dr. Gregor Kieslich
Crystal Chemistry of Functional Materials
Technische Universität München
Tel.: +49 89 289 13143
E-Mail: gregor.kieslich@tum.de

Originalpublikation:

Pia Vervoorts, Julian Keupp, Andreas Schneemann, Claire L. Hobday, Dominik Daisenberger, Roland A. Fischer, Rochus Schmid, Gregor Kieslich: Configurational entropy driven high‐pressure behavior of a flexible metal‐organic framework, in: Angewandte Chemie, 2020, DOI: 10.1002/ange.202011004, https://onlinelibrary.wiley.com/doi/10.1002/ange.202011004

https://news.rub.de/wissenschaft/2020-11-17-werkstoffforschung-metallorganische-netzwerke-werden-flexibel

Media Contact

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer