Gold-Nanoantennen spüren Proteine auf

Die neue Mainzer Methode ermöglicht es, im Mikroskop mit Hilfe eines Gold-Nanopartikels einzelne Protein-Moleküle zu beobachten (skizzierte Abbildung: Gold-Nanoantenne mit Protein-Molekülen in Lila)<br>Quelle: Institut für Physikalische Chemie, JGU

Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben eine neue Methode entwickelt, um einzelne Proteine zu beobachten. Die genaue Kenntnis der Dynamik von Proteinen ist wichtig, um die biologischen Funktionen zu verstehen, die auf molekularer Ebene ablaufen.

Bisher wurden dazu die Proteine mit fluoreszierenden Stoffen markiert. Dadurch verändert man aber das Untersuchungsobjekt und nimmt somit Einfluss auf den biologischen Prozess, den man beobachten möchte. „Unsere Methode erlaubt es erstmals, beliebige einzelne Proteine ohne Markierung live zu verfolgen“, teilt Prof. Dr. Carsten Sönnichsen vom Institut für Physikalische Chemie der JGU mit. „Wir bekommen dadurch einen ganz neuen Einblick in molekulare Vorgänge und sehen zum Beispiel, wie sehr auf kleinster Ebene alles in ständiger Bewegung ist.“

Die Methode der Mainzer Chemiker um Carsten Sönnichsen beruht auf dem Einsatz von Nanopartikeln aus Gold. Die funkelnden Nanoantennen können einzelne, nicht markierte Proteine aufspüren und verändern dann ein klein wenig die Frequenz, also die Farbe. Diese kleine Farbänderung ist mit der Mainzer Technik zu sehen. „Technisch gesehen ist das ein enormer Sprung: Wir haben bei der Beobachtung von einzelnen Molekülen eine extrem hohe zeitliche Auflösung erreicht“, so Sönnichsen. So kann der dynamische Vorgang bei der Anbindung eines Protein-Moleküls beispielsweise auf Millisekunden genau verfolgt werden.

Die Möglichkeit, einzelne Protein-Moleküle zu beobachten, eröffnet auch Wege, um völlig Neues anzugehen. So zum Beispiel die Fluktuation der Belegungsdichte zu verfolgen oder den Vorgang der Protein-Adsorption zeitlich aufzulösen. „Wir sehen, wie sich Moleküle bewegen, wie sie irgendwo andocken oder wie sich Protein-Moleküle falten, das ist ein Blick in die molekulare Welt“, erklärt Irene Ament aus der Arbeitsgruppe von Sönnichsen. Die neue Technik könnte nicht nur für die Chemie, sondern auch für die Medizin und Biologie von Bedeutung sein.

Die Arbeit ist im Zusammenhang des Exzellenzclusters Molecularly Controlled Non-Equilibrium (MCNE) ein wichtiger Baustein zur Erforschung von Nicht-Gleichgewichts-Phänomenen auf molekularer Ebene. Gefördert wurde sie unter anderem durch den ERC Starting Grant „SingleSens“.

Das Forschungsgebiet von Sönnichsen „Metall-Nanopartikel als optische Sonden in biologischen Systemen“ ist in das Mainzer Exzellenzcluster MCNE integriert, das den wichtigen Schritt in die abschließende Auswahlrunde der Bundesexzellenzinitiative geschafft hat.

Veröffentlichung:
Irene Ament, Janak Prasad, Andreas Henkel, Sebastian Schmachtel, and Carsten Sönnichsen
Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles
Nano Letters, 23. Januar 2012
DOI: 10.1021/nl204496g
Weitere Informationen:
Prof. Dr. Carsten Sönnichsen
Institut für Physikalische Chemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-20639 (Sekretariat) oder +49 6131 39-24313 (direkt)
Fax +49 6131 39-26747
E-Mail: carsten.soennichsen@uni-mainz.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Bestandsmanagement optimieren

Crateflow ermöglicht präzise KI-basierte Nachfrageprognosen. Eine zentrale Herausforderung für Unternehmen liegt darin, Über- und Unterbestände zu kontrollieren und Lieferketten störungsresistent zu gestalten. Dabei helfen Nachfrage-Prognosen, die Faktoren wie Lagerbestände, Bestellmengen,…

Partner & Förderer