Wie die Enden der Chromosomen die Zellalterung beeinflussen

Mit Untersuchungen zu den Prozessen, die sich an den Enden von Chromosomen abspielen, haben Heidelberger Wissenschaftler einen wichtigen Mechanismus aufgedeckt, der zu einem besseren Verständnis der Zellalterung führt. Im Mittelpunkt steht dabei die Länge der Chromosomenenden, der sogenannten Telomere, die sich experimentell beeinflussen lässt.

Die Arbeiten, die am Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) durchgeführt wurden, eröffnen neue Ansätze für die Entwicklung von Therapien bei Gewebeverlusten und Organversagen, die im Zusammenhang mit der Alterung von Zellen, der Seneszenz, stehen. Die vor Kurzem in der Zeitschrift „Nature Structural & Molecular Biology“ veröffentlichten Forschungsergebnisse könnten auch in der Krebsbehandlung von Bedeutung sein.

Jede Zelle enthält einen Chromosomensatz, in dem ein Großteil der Erbinformation in Form von DNA gespeichert ist. Diese Information muss geschützt werden, damit die ordnungsgemäße Funktion der Zelle erhalten bleibt. Dabei übernehmen die Enden der Chromosomen, die Telomere, eine wichtige Rolle und schützen die chromosomale DNA vor Abbau. „Man kann sich Telomere wie die Plastikkappen an Schnürsenkeln vorstellen. Ohne diese Kappen fransen die Enden aus, und schließlich kann der ganze Schnürsenkel seine Funktion nicht mehr erfüllen“, erklärt Dr. Brian Luke. Seine Forschergruppe am ZMBH beschäftigt sich in erster Linie mit der Frage, auf welche Weise Telomere der DNA Schutz bieten.

In der Wissenschaft ist bekannt, dass Telomere mit jeder Zellteilung kürzer werden und schließlich so weit verkürzt sind, dass sie die Chromosomen nicht mehr schützen können. Die ungeschützten Chromosomenenden senden Signale aus, die dafür sorgen, dass sich die Zelle nicht mehr teilt. Dieser Zustand wird als „Seneszenz“ bezeichnet. Mit fortschreitendem Alter gibt es immer mehr seneszente Zellen, die den Verlust von Gewebe und Organversagen begünstigen können. „Bei bestimmten Krankheiten haben die Patienten von Geburt an kurze Telomere und sind daher oft schon frühzeitig starken Gewebeverlusten und Funktionsstörungen von Organen ausgesetzt“, erläutert der Heidelberger Wissenschaftler.

Die Forschergruppe um Dr. Luke hat nun herausgefunden, dass das An- oder Abschalten der Transkription an den Telomeren erhebliche Auswirkungen auf deren Länge haben kann. Bei der Transkription handelt es sich um den Vorgang, bei dem Informationen der DNA in RNA-Moleküle umgeschrieben werden. Er konnte erst vor kurzem bei Telomeren nachgewiesen werden, aber die funktionelle Bedeutung dieser Entdeckung blieb ungeklärt. Die Molekularbiologen Bettina Balk und André Maicher konnten jetzt zeigen, dass die RNA selbst eine Schlüsselrolle bei der Regulierung der Telomerlänge spielt – und zwar besonders dann, wenn sie an die Telomer-DNA bindet und ein sogenanntes „RNA-DNA-Hybrid-Molekül“ bildet.

„Experimentell haben wir die Anzahl der RNA-DNA-Hybride an den Chromosomenenden beeinflusst. So können wir das Tempo der zellulären Seneszenz direkt erhöhen oder verringern, indem wir die Länge des Telomers verändern“, erläutert Bettina Balk. Nach den Worten von André Maicher könnte dies der erste Schritt hin zu Telomer-basierten Behandlungsmethoden bei Gewebeverlusten oder Organversagen sein. Im Falle von Krankheiten bleibt es zu überprüfen, ob die Veränderung der Transkriptionsraten von Telomeren tatsächlich den Gesundheitszustand verbessern kann. Von Bedeutung ist dieser Ansatz auch bei Krebszellen, die nicht altern und quasi unsterblich sind. „Die Regulierung der Länge von Telomeren über die Beinflussung der Transkription könnte daher auch in der Krebstherapie eine Anwendung finden“, betont Dr. Luke.

Die Nachwuchsforschergruppe von Dr. Luke ist Mitglied des Netzwerks AlternsfoRschung (NAR) an der Universität Heidelberg und wird finanziell von der Baden-Württemberg Stiftung unterstützt. Weitere Fördermittel werden von der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs „Zelluläre Qualitätskontrolle und Schadensbegrenzung“ (SFB 1036) der Ruperto Carola bereit gestellt.

Originalveröffentlichung:
B. Balk, A. Maicher, M. Dees, J. Klermund, S. Luke-Glaser, K. Bender & B. Luke: Telomeric RNA-DNA hybrids affect telomere length dynamics and senescence; Nat. Struct. Mol. Biol. (8 September 2013), DOI: 10.1038/nsmb.2662
Kontakt:
Dr. Brian Luke
Zentrum für Molekulare Biologie der Universität Heidelberg
Telefon (06221) 54-6897, b.luke@zmbh.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Media Contact

Marietta Fuhrmann-Koch idw

Weitere Informationen:

http://www.uni-heidelberg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer