Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Simulator: Frachter ohne Mannschaft

02.04.2014

Schiffe der Zukunft sollen unbemannt über die Weltmeere steuern. Ein neuer Simulator hilft, das Vorhaben voranzutreiben. Partner aus fünf Ländern entwickeln das Konzept für den autonomen Frachter.

Der Blick von Hans-Christoph Burmeister schweift über die Bordinstrumente: eine elektronische Seekarte, ein Display für die Wassertiefe, der Monitor daneben zeigt das Radarbild. Dann greift Burmeister zum Ruder und steuert seinen 220 Meter langen Massengut-Frachter in eine neue Richtung: »Jetzt fahren wir auf einem Kurs von 290 Grad, Geschwindigkeit zwölf Knoten.«


Auf einer modernen Schiffsbrücke läuft vieles bereits automatisiert ab. Völlig unbeaufsichtigt sollen aber auch die unbemannten Schiffe der Zukunft nicht fahren.

© MUNIN

Auch wenn das Szenario realistisch wirkt – Burmeister ist kein Kapitän auf seiner Brücke, sondern steht mitten in einem Raum des Fraunhofer-Centers für Maritime Logistik und Dienstleistungen CML in Hamburg. In der Einrichtung des Fraunhofer-Instituts für Materialfluss und Logistik IML ist ein Schiffs-führungssimulator aufgebaut. Die Steuer- und Anzeigeinstrumente ähneln denen eines Frachters.

Der Simulator soll helfen, ein ehrgeiziges Unterfangen voranzutreiben: Beim EU-Projekt MUNIN entwickeln die Fraunhofer-Forscher gemeinsam mit Partnern aus fünf Ländern das Konzept für ein autonomes Schiff – einen Massengutfrachter, der ohne Besatzung über die Weltmeere schippert. Der Beweggrund: »In Europa ist die Seefahrt als Beruf nicht mehr sonderlich beliebt«, sagt Projektkoordinator Burmeister. »Die Branche hat Nachwuchsprobleme.«

Im Ansatz gibt es die Technik für ein autonomes Schiff bereits – auf einer modernen Schiffsbrücke ist vieles automatisiert: Der Autopilot steuert einen vorgegebenen Kurs mit Unterstützung von GPS, eine Tempoautomatik hält die Geschwindigkeit. Radargeräte und Schiffserkennungssysteme suchen die Umgebung ab und schlagen bei Gefahr automatisch Alarm. Zusätzlich soll ein autonomes Schiff mit weiteren Sensoren bestückt werden: Herkömmliche und Infrarot-Kameras sollen die Meeresoberfläche beobachten, um besonders kleinere Fahrzeuge, Treibgut oder Schiffbrüchige zu erkennen.

Operator kann im Notfall per Satellit eingreifen

Als Kern des unbemannten Frachters dient eine zentrale Software. Sie wertet die Daten sämtlicher Sensoren aus und entscheidet zum Beispiel darüber, ob und wie das Schiff seinen Kurs ändert, um Kollisionen zu vermeiden – zum Beispiel mit einem umhertreibenden Container, der von einem anderen Frachter gefallen ist. Völlig unbeaufsichtigt wird das unbemannte Schiff allerdings nicht fahren. Via Satellit soll ein Mensch das Geschehen überwachen und, wenn nötig, eingreifen. »Es sind Situationen denkbar, in denen die autonomen Systeme an Bord überfordert sind«, erläutert Burmeister, »etwa, wenn mehrere Schiffe gleichzeitig auf Kollisionskurs sind oder es zu technischen Ausfällen kommt.« Für diese Fälle steht eine Station an Land bereit, die per Satellitenkommunikation eingreifen und das Schiff fernsteuern kann.

Um zu zeigen, wie dies in der Praxis aussehen könnte, setzt Burmeister seinen Simulator in Gang. Auf dem Bildschirm nähert sich von Backbord ein Containerschiff. Obwohl Burmeisters Frachter Vorfahrt hat, will es einfach nicht ausweichen. Um einen Zusammenstoß zu vermeiden, übernimmt der Forscher die Kontrolle über das autonome Schiff: »Ich deaktiviere den Autopiloten, leite eine Kursänderung nach Steuerbord ein, reduziere die Geschwindigkeit und warte, bis das andere Schiff vorbeigefahren ist.« Auch beim An- und Ablegen soll der Mensch das Ruder übernehmen. Läuft das Schiff aus dem Hafen aus, ist eine Crew an Bord. Erst wenn der Frachter das offene Meer erreicht, verlässt die Mannschaft per Lotsenboot oder Helikopter das Schiff, die automatische Steuerung übernimmt. Am Ziel läuft es umgekehrt: Rechtzeitig vor der Einfahrt geht eine Mannschaft an Bord, um den Frachter sicher in den Hafen zu steuern.

Im Herbst 2012 startete das MUNIN-Projekt. Da die Anforderungen an ein autonomes Schiff höchst vielfältig sind, tüfteln die Experten an den unterschiedlichsten Detailfragen. So muss gewährleistet sein, dass der Schiffsantrieb auch dann zuverlässig läuft, wenn wochenlang kein Maschinist nach dem Rechten schaut. Bislang sind die Maschinenräume so ausgelegt, dass man sie 24 Stunden unbeaufsichtigt lassen kann. Würde an Bord – verursacht durch einen Kurzschluss – ein Feuer ausbrechen, müssten automatisch Sprinklersysteme anspringen. Kritische Bereiche ließen sich vorsorglich mit CO2 fluten, damit könnte hier ein Brand gar nicht erst entstehen. Bei schwerem Seegang sollte der Autopilot den Rumpf so drehen, dass ihm die Wellen möglichst wenig zusetzen und generell würde man versuchen, aufziehende Unwettergebiete von vornherein zu umschiffen.

Computersimulation bis 2015 fertig

Im Herbst 2015 soll das EU-Projekt abgeschlossen sein. Das Ziel ist eine Computersimulation, mit der die Experten ihre Ideen virtuell testen und überprüfen können. Danach wäre es denkbar, ein reales Schiff mit Komplett-Automatik auszustatten. »Doch bereits vorher könnte die bemannte Schifffahrt von unseren Resultaten profitieren«, so Burmeister. Denn einzelne Komponenten, an denen die MUNIN-Fachleute tüfteln, wären schon heute auf jeder Schiffsbrücke hilfreich: So würde ein automatisches Ausguck-System die Crew ebenso entlasten wie ein verbessertes Warnsystem für Kollisionen.

Hans-Christoph Burmeister | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/April/frachter-ohne-mannschaft.html

Weitere Nachrichten aus der Kategorie Verkehr Logistik:

nachricht Fit2Load – umweltfreundliches Mobilitätskonzept für Filiallieferverkehr
15.02.2018 | Fachhochschule Bielefeld

nachricht Lösungen für die begrenzte Reichweite von Elektrobussen
02.02.2018 | Universität zu Lübeck

Alle Nachrichten aus der Kategorie: Verkehr Logistik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics