Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit der Autotram ins Büro

21.07.2010
Elektro- und Hybridfahrzeuge werden die Städte erobern: Autos, Räder, Busse und Bahnen. Neue Konzepte sind gefragt für den Individual- und den öffentlichen Personennahverkehr. In dem Großprojekt »Fraunhofer-Systemforschung Elektromobilität« erarbeiten die Wissenschaftler Lösungen für die Mobilität der Zukunft. Erste Ergebnisse liegen nun vor.

Feierabend: Die Fahrgäste stehen geduldig an der Haltestelle und warten auf ihre Buslinie. Immer wieder steigen ihnen Abgase in die Nase, wenn ein Bus hält und dann wieder anfährt. Dieses Szenario könnte bald der Vergangenheit angehören – der Stadtverkehr wird sich künftig verändern: Nicht nur Busse fahren mit Strom, mit Wasserstoff oder einer Kombination unterschiedlicher Antriebe. Ein mögliches Zukunftsgefährt ist die AutoTram®. Sie ist so lang wie eine Straßenbahn und so wendig wie ein Bus und vereint die jeweiligen Vorteile der Fahrzeuge: Schienen und Oberleitungen sind nicht notwendig – die »BusBahn« rollt auf Gummireifen und folgt einfach weißen Linien auf der Straße.


Die Versuchsplattform AutoTram® : Forscher testen neue Komponenten und Systeme für elektromobile Fahrzeuge der Zukunft. (© Fraunhofer IVI)

In dem Großprojekt »Fraunhofer-Systemforschung Elektromobilität« dient sie als Versuchsplattform. Das Fahrzeug ist Bestandteil des Gesamtkonzepts der Fraunhofer-Systemforschung, einer Forschungskooperation von 33 Fraunhofer-Instituten. »Wir möchten funktionsfähige Lösungen anbieten und die Elektromobilität in Deutschland voranbringen. Mit unseren beiden Versuchsplattformen – der AutoTram® und einem Pkw – zeigen wir, dass die neuen Komponenten im Zusammenspiel funktionieren«, sagt Professor Holger Hanselka, Koordinator des Projekts.

Das Bundesministerium für Bildung und Forschung BMBF fördert dieses Vorhaben mit insgesamt 44 Millionen Euro aus den Konjunkturprogrammen I und II für den Zeitraum von zwei Jahren. Das Projekt gliedert sich in vier Themenschwerpunkte auf: Fahrzeugkonzepte, Energieerzeugung, -verteilung und -umsetzung, Energiespeichertechnik sowie technische Systemintegration und gesellschaftspolitische Fragestellungen. Nach einem Jahr intensiver Forschungsarbeit liegen nun erste Ergebnisse vor.

»Erste Konstruktionen der AutoTram® entstanden bereits vor einigen Jahren am Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI in Dresden. Diese Kombination aus Bus und Bahn bietet unseren Kollegen und uns nun eine ideale Plattform, um neue Entwicklungen nicht nur in Simulationen, sondern in Aktion zu testen«, sagt Dr. Matthias Klingner, der das Institut seit fünf Jahren leitet. Eingebaut in das Fahrzeug können die neuen Module aus den Forschungslabors – wie Energiespeicher, Doppelschichtkondensatoren und Kupplungen – ihre Fähigkeiten in der Praxis beweisen.

Anders als Autos, die im Durchschnitt 23 Stunden am Tag parken – sind Busse und Bahnen den ganzen Tag unterwegs. So bleibt wenig Zeit, die Batterien zu laden. Ein Lösungsansatz für die AutoTram® sind Schnellladestationen an Haltestellen. An jedem dritten oder vierten Haltepunkt kann Strom gezapft werden. In 30 bis 60 Sekunden muss die erforderliche Energiemenge bei mehr als 1000 Ampere und 700 Volt aufgetankt werden. In dieser kurzen Zeit ist das nur mit Superkondensatoren möglich. Die Forscher arbeiten an den dazu notwendigen Modulen: beispielsweise an Energiespeichern, die auf Doppelschichtkondensatoren basieren, an Hochleistungswandlern und an Kontaktsystemen zur Übertragung des Stroms. Die Doppelschichtkondensatoren – auch Supercaps genannt – haben im Gegensatz zu Batterien eine hohe Leistungsdichte. Sie sind es, die dafür sorgen, dass die Ladung schnell gespeichert werden kann.

Dr. Ulrich Potthoff, Abteilungsleiter am IVI, erklärt das Prinzip anschaulich: »Batterien benötigen ihre Zeit, um aufgeladen zu werden. Man kann das vergleichen mit einer großen Badewanne mit kleinem Zufluss. Kondensatoren dagegen nehmen die Ladung sehr schnell auf, wie eine kleine Badewanne mit großem Zufluss. Allerdings können sie nur eine geringere Menge Energie speichern.« Die Ingenieure arbeiten daran, das Batteriesystem und die Kondensatoren für diese Anwendung im städtischen Verkehr zu verknüpfen. »Wir entwickeln Dualspeicher und testen auch die Kombination mit anderen Speichertypen und Brennstoffzellen«, ergänzt Potthoff. Seine Kollegen vom Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB steuern neue Entwicklungen der leistungselektronischen Komponenten bei, wie einen Gleichspannungswandler, der das Spannungsniveau anpasst. Diese DC/DC-Wandler sind notwendig, um die Doppelschichtkondensatoren mit dem Antriebsstrang zu koppeln. Entscheidend sind auch Materialien, die der Hochstromübertragung Stand halten. Die Oberfläche der Kontakte muss sehr stabil und verschleißfest sein. Geeignete Materialien und ihre Verarbeitung haben Forscher vom Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS gefunden.

»Die Bauteile sind so aufeinander abzustimmen, dass sie mit allen anderen Kom-ponenten harmonieren. Wir passen am IVI die Module in das Gesamtsystem der AutoTram® ein und konfigurieren die Schnittstellen«, erläutert Potthoff. Dazu gehören auch die Lithium-Ionen-Batteriesysteme für Elektrofahrzeuge. Damit befassen sich Experten aus elf Fraunhofer-Instituten unter Hochdruck – keine einfache Aufgabe, denn an Batterien und elektrische Systeme werden höchste Anforderungen gestellt. Sie müssen sicher, langlebig und effizient sein. Die Entwicklung dieser Packs erfolgt sowohl für Pkws als auch für die Autotram®. Das Batteriesystem besteht meist aus mehreren hundert Zellen, und die entladen sich nicht immer gleichmäßig schnell. Und wenn einzelne ausfallen oder nicht mehr die vorgesehene Leistung bringen, kann die gesamte Batterie in Mitleidenschaft gezogen werden. Die einzelnen Zellen werden durch ein übergeordnetes Energiemanagementsystem gesteuert. Projektleiter Dr. Matthias Vetter vom Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg, der das Vorhaben koordiniert, erklärt das Grundprinzip: »Die Elektronik misst in Bruchteilen von Sekunden den Strom, die Einzelzellspannung sowie die Temperatur und ermittelt daraus den Lade- und Alterungszustand. So lässt sich für jede Zelle erkennen, ob Überladungen, Tiefentladungen, zu starke Erwärmung oder vorzeitige Alterung drohen«.

Teamarbeit ist der Schlüssel zum Erfolg: So bringen die vier Institute LBF, ISC, IWM, IVI ihre Erfahrungen in die Entwicklung einer neuartigen magnetorheologischen Motor-Generator Kupplung ein. Diese elektrisch schaltbare Kupplung funktioniert folgendermaßen: Unter Einfluss eines Magnetfeldes verändert eine integrierte Flüssigkeit ihre Konsistenz von flüssig zu fest. Der Kupplungsvorgang kann damit präzise gesteuert werden. Ausgerüstet mit hocheffizienten elektrischen Antriebsmotoren und Steuergeräten sowie Hochleistungsbatterien und Superkondensatoren kann die AutoTram® ihre Fahrgäste fast ohne Emissionen transportieren. Es sind jedoch noch technologische Hürden zu nehmen, bis die Fahrgäste, die an den Bushaltestellen warten, keine Abgase mehr einatmen zu brauchen.

Franz Miller | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010/07/Mit_der_Autotram_ins_Buero.jsp

Weitere Nachrichten aus der Kategorie Verkehr Logistik:

nachricht Intelligente Planung und Steuerung für mehr Effektivität und Effizienz bei Autoumschlag in Häfen
14.09.2017 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Umweltfreundliches Segway toppt Rad und Auto bei kurzen Strecken
08.09.2017 | Hochschule Heilbronn

Alle Nachrichten aus der Kategorie: Verkehr Logistik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterielle Nano-Harpune funktioniert wie Power-Bohrer

26.09.2017 | Biowissenschaften Chemie

eTRANSAFE – ein Forschungsprojekt für mehr Sicherheit bei der Arzneimittelentwicklung

26.09.2017 | Biowissenschaften Chemie

Die schnellste lichtgetriebene Stromquelle der Welt

26.09.2017 | Physik Astronomie