Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verfahren für ultradünne Kohlenstoff-Membranen erfunden

22.08.2013
Physiker der Universität Bielefeld entwickeln neue Produktionsmethode

In der Zukunft sollen sie feinste Stoffe filtern können: Kohlenstoff-Nanomembranen. Diese Trennschichten sind ultradünn und bestehen nur aus einer Schicht Moleküle. Auf lange Sicht kommen sie in Frage, um Gase voneinander zu trennen und damit zum Beispiel Giftstoffe aus der Luft zu filtern.


Mit dem neuen Verfahren hat das Team um Professor Dr. Armin Gölzhäuser zwölf verschiedene Nano-Membranen hergestellt. Die drei Aufnahmen stammen aus dem Bielefelder Helium-Ionen-Mikroskop und zeigen Nano-Membranen aus verschiedenen Ausgangsstoffen. Universität Bielefeld

Derzeit beschäftigt sich die Grundlagenforschung noch mit der Herstellung der Nano-Membranen. Einem Forschungsteam um den Bielefelder Physiker Professor Dr. Armin Gölzhäuser ist es nun gelungen, ein neues Verfahren für die Herstellung der Membranen zu entwickeln. Der Vorteil: Mit ihm lässt sich eine Reihe unterschiedlicher Kohlenstoff-Nanomembranen erzeugen, die sehr viel dünner sind als es mit etablierten Verfahren möglich ist. Über diesen Forschungserfolg berichtet die neue Print-Ausgabe des renommierten Forschungsjournals „ACS Nano“.

Vor mehr als zehn Jahren hatten Professor Gölzhäuser und sein damaliges Team die Grundlage für die jetzige Entwicklung geschaffen: Mit Biphenyl-Molekülen haben sie schon damals eine Kohlenstoff-Nanomembran hergestellt. In der neuen Studie wurde das Verfahren so verändert, dass auch andere Ausgangsstoffe als Biphenyl verwendet werden können. Voraussetzung ist, dass diese Moleküle ebenfalls mit mehreren so genannten Phenylringen ausgestattet sind.

Für ihre neue Methode verwenden die Forscherinnen und Forscher die Ausgangsstoffe in Pulverform. Sie geben das Pulver in reinen Alkohol, in dem eine sehr dünne Metallschicht liegt. Das Pulver löst sich zunächst auf. Nach kurzer Zeit ordnen sich die gelösten Moleküle auf der Metallschicht von selbst zu einer molekularen Schicht an, die durch eine nachfolgende Elektronenbestrahlung zur Nano-Membran wird. Anschließend sorgen die Forscher dafür, dass sich die Metallschicht zersetzt, so dass nur noch die Nano-Membran übrig bleibt. „Bisher haben wir kleine Proben hergestellt, die wenige Quadratzentimeter groß sind“, sagt Gölzhäuser. „Mit dem Verfahren lassen sich aber auch Nanomembranen machen, die Quadratmetergröße haben.“

Die neue Methode ist etwas Besonderes, weil die Wissenschaftler damit maßgeschneiderte Nano-Membranen erzeugen können. „Jeder Ausgangsstoff hat verschiedene Eigenschaften – von Dichte über Durchlässigkeit bis zur Elastizität. Durch unser Verfahren werden diese Merkmale auf die Nano-Membran übertragen.“ Auf diese Weise lassen sich Kohlenstoff-Nano-Membranen für zahlreiche unterschiedliche Bedarfe produzieren. „Das war vorher nicht möglich“, sagt Gölzhäuser.

Hinzu kommt: Aus den Nano-Membranen lässt sich problemlos das „Wundermaterial“ Graphen herstellen. Von Graphen erwarten sich Forscher weltweit technisch revolutionierende Eigenschaften, weil es extrem zugfest ist und Strom und Wärme sehr gut leitet. Die Umwandlung von Nano-Kohlenstoff-Membranen zu Graphen ist für die Bielefelder Wissenschaftler simpel: Die Membranen müssen dafür bei etwa 700 Grad Celsius im Vakuum erhitzt werden.

Für das Forschungsprojekt arbeitete das Team von Gölzhäuser mit Physikern der Universität Ulm, der Universität Frankfurt und des Max-Planck-Instituts für Polymerforschung zusammen. Förderer der Studie waren das Bundesministerium für Bildung und Forschung und die Deutsche Forschungsgemeinschaft.

Originalveröffentlichung:
Polina Angelova, Henning Vieker, Nils-Eike Weber, Dan Matei, Oliver Reimer, Isabella Meier, Simon Kurasch, Johannes Biskupek, Dominik Lorbach, Katrin Wunderlich, Long Chen, Andreas Terfort, Markus Klapper, Klaus Müllen, Ute Kaiser, Armin Gölzhäuser und Andrey Turchanin: A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes, ACS Nano, http://dx.doi.org/10.1021/nn402652f, online erschienen am

26. Juni 2013

Kontakt:
Prof. Dr. Armin Gölzhäuser, Universität Bielefeld
Fakultät für Physik
Telefon: 0521 106-5362
E-Mail: goelzhaeuser@physik.uni-bielefeld.de

Ingo Lohuis | idw
Weitere Informationen:
http://www.uni-bielefeld.de
http://www.physik.uni-bielefeld.de/experi/goelz/index.php

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Löschwasser mobil und kosteneffizient reinigen
18.01.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik