Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Traummaße mit der virtuellen Prüflehre - Schnelle Qualitätssicherung mit dem Projektor

10.08.2009
Qualitätskontrollen verursachen täglich große Kosten in Produktion und Entwicklung und verzögern die Konzeption von Prototypen erheblich. Wem es gelingt, Fertigungsfehler schneller zu erkennen, der gewinnt einen deutlichen Vorsprung.

Ein Forscherteam der Technischen Universität München (TUM) untersuchte hierzu eine fabelhaft einfach klingende Idee: Sie erstellen digital das Bild eines perfekten Bauteils, projizieren es auf das Prüfobjekt und vergleichen Projektion und Realität. Doch was so simpel scheint, birgt so manche Tücke.

Maschinen, Möbel, oder Kinderspielzeug, die meisten Produkte unseres Alltags bestehen aus einer großen Zahl von Einzelteilen. Und wenn nur eines der Puzzleteile nicht exakt passt, funktioniert gar nichts mehr. In der Entwicklung muss das Zusammenspiel der Teile aufwändig geprüft werden, in der Produktion geraten im schlimmsten Fall die Fließbänder ins Stocken. Um Produktionsausfälle zu vermeiden, investieren Firmen viel Geld in die Qualitätssicherung und das mühsame Aussortieren mangelhafter Stücke bei Wareneingang und Produktion.

Umfassende Kontrollen erfordern entweder den Einsatz teurer Geräte oder zeitaufwendige Messungen von Hand. Im Zuge der manuellen Prüfung muss ein Mitarbeiter für jedes einzelne Bohrloch allein zweimal Maß nehmen, um Durchmesser und Abstand vom Rand zu bestimmen. Für Serienprodukte werden derzeit Matrizen, eine Art Negativ der jeweiligen Gegenstände, angelegt und die Einzelteile damit verglichen. Entwickler von Prototypen neuartiger Geräte arbeiten allerdings mit ganz individuellen Einzelteilen, für die sich eigene Matrizen nicht lohnen. Ein Forscherteam des Instituts für Werkzeugmaschinen und Betriebswissenschaften (iwb) der TU München bietet hier einen genialen Lösungsansatz: Ohne Lineal, Winkelmesser oder Matrize gleichen sie beliebige Gegenstände mit ihren Idealmaßen ab - und zwar im Handumdrehen.

Dafür verwendete das Team um Professor Dr.-Ing. Gunther Reinhart einen handelsüblichen Projektor und einen Rechner mit einer speziellen Software. Aus den vorhandenen Konstruktionszeichnungen erstellten die Wissenschaftler am Computer eine dreidimensionale Grafik des zu überprüfenden Bauteils, beispielsweise eines Befestigungsblechs. Diese projizieren sie auf das echte Bauteil. Dabei kommt jedes virtuelle Bohrloch auf dem entsprechenden realen Loch zum Liegen. Abweichungen zwischen Projektion und Objekt erkennt der Prüfer auf den ersten Blick Millimeter genau.

Doch ganz so einfach ist es nicht; einige praktische Hürden stellten sich den Wissenschaftlern in den Weg: Zur Erstellung der dreidimensionalen Grafik dienen den Forschern so genannte CAD-Daten (Computer Aided Design): "CAD-Daten sind die digitale, räumliche Beschreibung von Objekten. Sie spielen zum Beispiel auch für die Herstellung von Animationen in Kinofilmen eine wichtige Rolle," sagt Stefan Krug, Mitglied des Forscherteams am iwb. Die Projektion funktioniert aber nur auf einer ebenen Fläche, wie einer Kinoleinwand oder einem Computerbildschirm. Wird das erzeugte Abbild direkt auf ein dreidimensionales Objekt projiziert, entsteht dabei ein deutlich verzerrtes und damit unbrauchbares Bild. Mit der Entwicklung einer neuen Software räumten die Wissenschaftler dieses Hindernis aus dem Weg. Nach einmaliger Kalibrierung der Versuchsapparatur gleicht das Korrekturprogramm die Verzerrung der Projektion rechnerisch aus.

Die nächste Tücke stellen die unzähligen Möglichkeiten dar, wie ein Bauteil auf dem Tisch liegen könnte. Damit die Projektion aber am Ende mit dem Objekt übereinstimmt, müssen beide exakt gleich ausgerichtet sein. Dieses nicht triviale Problem lösten die Wissenschaftler durch Anwendung eines kommerziellen Softwarepakets. "Das Programm berechnet aus den Massedaten des Bauteils, wie Gewicht, Form und Schwerpunkt, wie dieses auf einem Tisch zu Liegen kommt, wenn die Schwerkraft ganz normal auf sie wirkt - niemals würde es beispielsweise auf einer Ecke stehen bleiben," erläutert Frédéric-Felix Lacour, der diese Anpassungen entwickelt hat. Dieses Verhalten wird auf das virtuelle Abbild übertragen, so dass dieses ebenfalls "flach liegt", also gemäß der Schwerkraft ausgerichtet ist. Nun muss der Prüfer das reale Bauteil nur noch in der Ebene nach links oder rechts drehen, bis Projektion und Realität übereinstimmen.

Die Anwendung der TUM- Wissenschaftler ermöglicht teilautomatisierte und genaue Prüfungen innerhalb weniger Sekunden. In der Entwicklung neuer Geräte und der Qualitätskontrolle großer Lieferungen könnte diese Methode eine enorme Zeitersparnis bedeuten. Darüber hinaus könnte das Verfahren überall dort zum Einsatz kommen, wo virtuelle Daten mit der Realität verglichen werden.

Kontakt:
Prof. Dr.-Ing. Gunther Reinhart
Technische Universität München
Institut für Werkzeugmaschinen und Betriebswissenschaften
Boltzmannstr. 15, D-85748 Garching
Tel.: +49 89 289 15504, Fax: +49 89 289 15444
E-Mail: gunther.reinhart@iwb.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.iwb.tum.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Projekt CeGlaFlex: Hauchdünne, bruchsichere und biegsame Keramik und Gläser
24.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Löschbare Tinte für den 3-D-Druck
24.04.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie