Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Study provides recipe for 'supercharging' atoms with X-ray laser

12.11.2012
Researchers using the Linac Coherent Light Source (LCLS) at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have found a way to strip most of the electrons from xenon atoms, creating a "supercharged," strongly positive state at energies previously thought too low.

The findings, which defy expectations and theory, could help scientists deliberately induce the high levels of damage needed to study extreme states of matter or ward off damage in samples they're trying to image. The results were reported this week in Nature Photonics.


The ultra-bright X-ray laser pulses of the Linac Coherent Light Source at SLAC National Accelerator Laboratory can be used to strip electrons away from atoms, creating ions with strong charges. The ability to interact with atoms is critical for making the highest resolution images of molecules and movies of chemical processes.

Credit: Greg Stewart/SLAC National Accelerator Laboratory


Specialized equipment known as the CAMP chamber, pictured here, played a key role in advanced research at SLAC's free-electron laser, the Linac Coherent Light Source. A new paper details experiments with CAMP that observed a record supercharged state in xenon atoms. The equipment was on loan to SLAC through a collaboration with the Max Planck Society Advanced Study Group.

Credit: Brad Plummer/SLAC National Accelerator Laboratory

While the powerful X-rays of LCLS inevitably destroy the samples being studied, delaying damage – even for millionths of billionths of a second – can prove critical in producing detailed images and other data.

"Our results give a 'recipe' for maximizing the loss of electrons in a sample," said Daniel Rolles, a researcher for the Max Planck Advanced Study Group at the Center for Free-Electron Laser Science in Hamburg, Germany, who led the experiments. "For instance, researchers can use our findings if they're interested in creating a very highly charged plasma. Or, if the supercharged state isn't part of the study, they can use our findings to know what X-ray energies to avoid."

Just as a stretched guitar string can vibrate and sustain a note, a specific tuning of the laser's properties can cause atoms and molecules to resonate. The resonance excites the atoms and causes them to shake off electrons at a rate that otherwise would require higher energies.

While it is common knowledge that triggering resonances in atoms will affect their charged states, "it was not clear to anybody what a dramatic effect this could have in heavy atoms when they are being ionized by a source like LCLS," Rolles said. "It was the highest charge state ever observed with a single X-ray pulse, which shows that the existing theoretical approaches have to be modified."

The team had previously used a laser facility in Germany to expose various atoms and molecules to pulses of ultraviolet light, and was eager to use the higher-energy LCLS for further studies.

"The LCLS experiment pushed the charged state to an unprecedented and unexpected extreme – more than doubling the expected energy absorbed per atom and ejecting dozens of electrons," said Benedikt Rudek from the Max Planck Advanced Study Group, who analyzed the data.

In addition to creating or avoiding supercharged plasma states in experiments, Rolles said the "dramatic change" caused by resonance in the absorption of X-ray energy could someday be exploited to improve the resolution of images captured in LCLS experiments.

"Most biological samples have some heavy atoms embedded, for instance," Rolles said, and in some experiments, avoiding the resonance trigger might prevent rapid damage to those atoms.

The researchers have since done similar LCLS experiments involving the heavy element krypton and molecular systems that contain other heavy atoms, said Artem Rudenko of Kansas State University, who led a recent follow-up experiment.

The team's precise measurements were made possible by a sophisticated experimental station built by the Max Planck Advanced Study Group in Germany. In total, the equipment weighed about 11 tons and was shipped to SLAC in 40 crates. It stayed at LCLS for three years and was used in more than 20 experiments ranging from atomic and molecular physics to material sciences and bio-imaging.

"Reassembling this machine at LCLS within one month and then commissioning it and doing a science experiment in only seven days was an absolutely incredible feat," said Rolles.

The research team included scientists from 19 research centers, including: Max Planck Advanced Study Group and several Max Planck institutes, PNSensor GmbH, Technical University of Berlin, Jülich Research Center, University of Hamburg and Physikalisch-Technische Bundesanstalt in Germany; SLAC and Western Michigan and Kansas State universities in the U.S.; University of Pierre and Marie Curie and National Center for Scientific Research in France; and Kyoto and Tohoku universities in Japan.

LCLS is supported by DOE's Office of Science.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Andy Freeberg | EurekAlert!
Further information:
http://www.slac.stanford.edu

More articles from Process Engineering:

nachricht Lighter with Laser Welding
03.09.2015 | Laser Zentrum Hannover e.V.

nachricht Gluing with the Laser
30.06.2015 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoperlen für die Stahlschmiede

Stahl gibt es seit rund 3000 Jahren und heute sogar in mehreren Tausend Variationen, und trotzdem ist er immer wieder für Überraschungen gut. Wissenschaftler des Max-Planck-Instituts für Eisenforschung in Düsseldorf haben in einem manganhaltigen Stahl nun beobachtet, dass die Legierung an linienförmigen Defekten eine andere Kristallstruktur bildet, als sie typisch ist für das Material. Sie berichten darüber im Fachjournal Science. Da sich die Länge der Liniendefekte in einem Kubikmeter Stahl auf ein Lichtjahr summieren kann, dürfte die Entdeckung große praktische Bedeutung haben. Denn von der Mikrostruktur eines Stahls hängen auch seine Eigenschaften ab.

Versetzungen können Leben retten. Solche Liniendefekte, genauer gesagt Stufenversetzungen entstehen, wenn eine Atomlage eines Kristalls unvollständig bleibt,...

Im Focus: LARA - Luftgekühlter Radnabenmotor mit hoher Drehmomentdichte auf Basis gegossener Aluminiumspulen

LARA umfasst die Entwicklung, Fertigung und Erprobung eines robusten luftgekühlten Radnabenmotors mit hoher Drehmomentdichte. Dieser kommt als Direktantrieb an allen vier Rädern eines leichten Stadtfahrzeugs als Demonstrator zum Einsatz. Wesentliche Herausforderung ist, das für die Fahrzeugnutzung im urbanen Umfeld notwendige Drehmoment bei hohen Wirkungsgraden aufzubringen und zugleich eine technologisch einfache Luftkühlung zur Abführung der thermischen Verlustleistungen umzusetzen.

Für die Wicklung des Elektromotors werden die vom Fraunhofer IFAM entwickelten gegossenen Spulen mit maximalem Nutfüllgrad eingesetzt, die zur Minimierung von...

Im Focus: Hubble survey unlocks clues to star birth in neighboring galaxy

In a survey of NASA's Hubble Space Telescope images of 2,753 young, blue star clusters in the neighboring Andromeda galaxy (M31), astronomers have found that M31 and our own galaxy have a similar percentage of newborn stars based on mass.

By nailing down what percentage of stars have a particular mass within a cluster, or the Initial Mass Function (IMF), scientists can better interpret the light...

Im Focus: Fraunhofer ISE entwickelt hochkompakten Wechselrichter für unterbrechungsfreie Stromversorgungen

Bauteile aus Siliziumkarbid ermöglichen Wirkungsgrad von 98,7 Prozent

Forscher des Fraunhofer-Instituts für Solare Energiesysteme ISE haben einen hochkompakten und -effizienten Wechselrichter für die unterbrechungsfreie...

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

HMI 4.0 in mobilen Arbeitsmaschinen

04.09.2015 | Veranstaltungen

Innovative Citizen – Festival für neue urbane Fertigkeiten

04.09.2015 | Veranstaltungen

Seilroboter mit Passagier

04.09.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

HMI 4.0 in mobilen Arbeitsmaschinen

04.09.2015 | Veranstaltungsnachrichten

Hinweise auf mikrobielles Leben im Erdmantel unterhalb des Meeresbodens entdeckt

04.09.2015 | Biowissenschaften Chemie

Gleichgewichtsorgan - Flexibler Sensor

04.09.2015 | Biowissenschaften Chemie