Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stahlfaserbeton schnell kontrollieren

04.11.2013
Stahlfaserbeton ist praktisch und rasch einsatzbereit. Doch die Qualität des Werkstoffs lässt sich nur schwer überprüfen – daher lehnen viele Bauunternehmer ihn ab. Mit einem neuen mathematischen Verfahren lässt sich das jetzt schnell kontrollieren.

Man überspannt Täler und Flüsse mit ihm, man baut Wände daraus und kleidet damit Tunnels aus: Beton ist das am häufigsten verwendete Baumaterial. Meist kommt Stahlbeton zum Einsatz.


In der Computertomographie wird der Betonzylinder detailliert dargestellt. Der Riss verläuft entlang der dunklen Fläche.
© Fraunhofer ITWM

Das Prinzip kennt jeder, der schon einmal eine Baustelle näher betrachtet hat: Aus langen Stahlstangen biegen die Arbeiter ein dichtes Stahlgerüst, die Bewehrung, die dann mit Beton aufgefüllt wird. Doch Stahlbetonbau ist zeitraubend. Es können Tage und Wochen vergehen, bis die Bewehrung großer Gebäude geknüpft ist und endlich mit Beton vergossen werden kann.

Schneller geht es mit Stahlfaserbeton. Man mischt dem flüssigen Beton einfach kiefernnadellange Stahlfasern bei. Im ausgehärteten Beton übernimmt dieses Fasergewebe dann die Aufgabe der klassischen Bewehrung. Es schluckt die Kräfte und gleicht Risse aus. Trotzdem hat sich der Stahlfaserbeton bislang nicht durchgesetzt. Der Grund: Seine Qualität lässt sich nur schwer ermitteln. Bisher gibt es keine Methode, mit der man einfach und zuverlässig untersuchen kann, wie gut sich die Fasern im Beton verteilt haben. Davon aber hängt die Tragfähigkeit des Werkstoffs entscheidend ab. Sind die Fasern verklumpt oder einzelne Bereiche einer Betonplatte völlig frei von Fasern, kann das Material Belastungen weniger gut widerstehen. Vielen Bauunternehmen ist der Einsatz von Stahlfaserbeton deshalb zu unsicher.

Software bewertet das Fasersystem

Für Durchblick im Faserbeton sorgt jetzt ein neues Analyseverfahren, das Mathematiker vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern entwickelt haben: Mithilfe der Wahrscheinlichkeitsrechnung ermittelt es in wenigen Sekunden, wie die vielen Fasern in einer Betonprobe verteilt sind. Die Experten um Projektleiter Dr. Ronald Rösch nutzen dafür Röntgendaten aus einem Computertomographen (CT). »Das ist wie bei einer medizinischen Untersuchung«, sagt er, »nur, dass wir keinen Menschen, sondern eine Probe aus dem fertigen Bauteil untersuchen.«

Die Forscher ziehen dazu einen etwa zehn Zentimeter langen Bohrkern aus dem Beton. Dieser wird mit Röntgenstrahlung abgetastet. Die Auflösung dieses industriellen CT ist etwa tausendmal feiner als bei einem medizinischen Gerät. Das System macht mikrometerfeine Strukturen sichtbar. Es spuckt einen hochaufgelösten dreidimensionalen Datensatz der Betonprobe mit etwa acht Milliarden Bildpunkten aus; eine gewaltige Datei. Diese Bilddaten analysieren Rösch und seine Mitarbeiter mit ihrer Software. Zunächst prüft diese anhand der Kontrastunterschiede, zu welcher Struktur jeder einzelne Bildpunkt gehört, zum Beton, zu einem Steinchen, einer eingeschlossenen Luftblase oder zu einer Stahlfaser. So werden im Bild nach und nach sämtliche Fasern sichtbar.

»Dieses Bild allein hilft aber wenig«, erklärt Rösch, »weil das Gewirr so dicht ist, dass man mit dem bloßen Auge kaum einzelne Fasern erkennen kann.« Die Kaiserslauterer Forscher haben daher eine Software entwickelt, die Ordnung ins Chaos bringt: Sie bewertet nicht jede einzelne Faser, sondern gleich das ganze System. Das Programm entscheidet einfach, ob ein Pixel Bestandteil einer Faser ist und welche Richtung sie hat.

Für jeden Bildpunkt berechnet das Programm, wie die benachbarten Stellen definiert sind. Handelt es sich um eine Faser oder nicht? Interessant sind vor allem die Punkte, an denen sich viele Fasern berühren oder kreuzen. Denn zunächst ist nicht klar, zu welcher Faser jedes einzelne benachbarte Pixel eigentlich gehört; zur Faser, die von links oben auf die Kreuzung trifft oder zur der, die direkt von oben kommt. Deshalb nutzen die Wissenschaftler hier die Wahrscheinlichkeitsrechnung. Sie gewichtet die Lage jedes Punkts und ordnet diesen logisch sinnvoll einer Faser zu. Die Software verrät nicht nur, wie hoch der Faseranteil in der Probe ist, sondern auch, wie die Fasern ausgerichtet sind. »Das ist vor allem wichtig, wenn die Betonbauteile Kräfte aus einer bestimmten Richtung aufnehmen müssen«, sagt Rösch, beispielsweise bei Brücken, über die Autos und Züge rauschen.

Natürlich weiß Rösch, dass sich ein Computertomograph, der derzeit noch die Größe eines Wandschranks hat, nicht direkt auf einer Baustelle einsetzen lässt. »Doch die Hürde ist überwindbar«, sagt Rösch. »Unsere Kollegen am Fraunhofer-Entwicklungszentrum Röntgentechnik EZRT in Erlangen haben schon ein Gerät von der Größe einer Bierkiste entwickelt.« Ein Prototyp für die Praxis könnte in fünf Jahren verfügbar sein, schätzt der Mathematiker.

Dr. Ronald Rösch | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/November/stahlfaserbeton-schnell-kontrollieren.html

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Projekt CeGlaFlex: Hauchdünne, bruchsichere und biegsame Keramik und Gläser
24.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Löschbare Tinte für den 3-D-Druck
24.04.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kaltwasserkorallen: Versauerung schadet, Wärme hilft

27.04.2017 | Biowissenschaften Chemie

IAB-Arbeitsmarktbarometer: Arbeitsmarkt bleibt im Aufwind

27.04.2017 | Wirtschaft Finanzen

Wurmmittel für Weidetiere können die Keimung von Pflanzensamen beeinflussen

27.04.2017 | Agrar- Forstwissenschaften