Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Silizium – fast zum Zerreissen verspannt

02.10.2012
Mechanisch extrem verspannte Silizium-Nanodrähte sind eine mögliche Grundlage für effizientere Transistoren

Zieht man ein Stück Silizium auseinander, erzeugt man in dessen Inneren eine mechanische Spannung, die die elektronischen Eigenschaften des Materials deutlich verbessert. Mit verspanntem Silizium lassen sich also z. B. schnellere und leistungsfähigere Mikroprozessoren bauen.


Martin Süess und Renato Minamisawa bereiten am Elektronenmikroskop eine Untersuchung der Nanodrähte vor. (Foto: Paul Scherrer Institut/F. Reiser)

Forscher des Paul Scherrer Instituts und der ETH Zürich haben nun ein Verfahren entwickelt, mit dem sie in einer Siliziumschicht 30 Nanometer dünne, verspannte Drähte erzeugen können. Deren Spannung ist die höchste, die bislang in einem Material beobachtet worden ist, das als Grundlage für Elektronikbauteile dienen kann. Ziel ist es, auf Basis solcher Drähte leistungsfähige Transistoren für Mikroprozessoren herzustellen.

Bei dem Verfahren beginnt man mit einer dünnen Siliziumschicht, die durch Befestigung auf einer Unterlage schon eine Spannung hat. Durch gezieltes Wegätzen des umgebenden Materials erzeugt man in der Siliziumschicht den dünnen Draht, der wie eine winzige Brücke über einer Schlucht hängt und an ihrer schmalsten Stelle die höchste Spannung aufweist. Über die Ergebnisse berichten die Forscher in der neuesten Ausgabe des Online-Journals Nature Communications.

Die Möglichkeiten, Mikroprozessoren auf Siliziumbasis leistungsfähiger zu machen, indem man deren einzelne Bauteile immer kleiner macht, stossen allmählich an ihre Grenzen. Es gibt aber einen anderen vielversprechenden Weg, der zum Teil schon von der Industrie genutzt wird: Wenn man Silizium ausdehnt oder auch komprimiert, entsteht eine mechanische Spannung, die die elektronischen Eigenschaften des Materials verbessern kann. Zum Beispiel erhöht eine Zugsverspannung, wenn sie in die richtige Richtung wirkt, die Beweglichkeit der Elektronen, sodass Transistoren aus so verspanntem Silizium als Schalter deutlich schneller sind.

„Es ist an sich keine Kunst, einen Draht zu verspannen – man könnte einfach an beiden Enden kräftig ziehen“, erklärt Hans Sigg vom Labor für Mikro- und Nanotechnologie am Paul Scherrer Institut „Das Problem ist, dass man einen solchen Draht in dem verspannten Zustand in ein elektronisches Bauteil einbauen muss.“

30 Nanometer breite Silizium-Brücke

Nun haben Forscher am Paul Scherrer Institut ein Verfahren entwickelt, mit dem sie Siliziumdrähte erzeugen können, die fest mit dem umgebenden Material verbunden sind und eine Spannung aufweisen, die mehr als doppelt so gross ist wie die, die in heute verfügbaren Bauteilen genutzt wird. Als Ausgangsmaterial haben sie industriell hergestellte Substrate mit leicht verspannter Siliziumschicht auf einer Siliziumoxidunterlage benützt.

„Das war uns sehr wichtig, denn damit zeigen wir, dass unser Verfahren verträglich ist mit den in den Chip-Fabriken gebräuchlichen Materialien und Herstellungsverfahren“, sagt Hans Sigg. „Das Material kann man sich so vorstellen, dass das Silizium in alle Richtungen auseinandergezogen worden ist, bevor man es auf der Oxidunterlage befestigt hat“, erklärt Renato Minamisawa vom Paul Scherrer Institut, der die Experimente zusammen mit Martin Süess von der ETH Zürich durchgeführt hat. Die Unterlage hält das Silizium so stark fest, dass es sich nicht mehr zusammenziehen kann.“

Nun ätzt man geschickt gewählte Teile der Siliziumschicht und dann deren Unterlage mit entsprechenden Ätzmitteln weg, sodass schliesslich aus der Siliziumschicht ein dünner Draht entsteht, 30 Nanometer breit und 15 Nanometer dick, der nur an seinen beiden Enden mit dem Rest des Materials verbunden ist. Das Verfahren ist ein Beispiel für die Möglichkeiten moderner Nanotechnologie. So lassen sich in einer Siliziumschicht Tausende solcher Drähte mit genau vorgegebenem Spannungszustand fehlerfrei herstellen. Das Verfahren ist also sehr zuverlässig. „Und es ist skalierbar, das heisst, man kann die Teile mit diesem Verfahren im Prinzip beliebig klein machen“, betont Sigg.

Schnelle Transistoren dank extremer Verspannung

„Da sich jetzt die ganze Kraft, die sich vor dem Ätzen über einen grösseren Bereich verteilt hat, auf den Draht konzentriert, entsteht darin eine sehr starke Spannung“, so Minamisawa, „die stärkste Spannung, die man im Silizium je erzeugt hat, vermutlich fast die stärkste, die möglich ist, bevor das Material bricht.“ Um die Spannungsverteilung im Detail zu bestimmen, wurden Ramanspektroskopische Messungen und Computersimulationen im Labor für Nanometallurgie unter Ralph Spolenak an der ETH ausgeführt. In Zukunft sollen die Drähte ebenfalls an der Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts untersucht werden. Vor allem wird man aber messen wollen, wie stark sich die elektrischen Eigenschaften des Materials verbessert haben.

Das endgültige Ziel wäre, diese Silizium-Nanodrähte als schnelle Transistoren innerhalb von Mikroprozessoren zu nutzen. Dafür werden die Forscher nun mit Kooperationspartnern untersuchen, wie man diese Drähte in eine Transistorstruktur einbetten kann. Dazu muss man sie „dotieren“, also mit kleinen Mengen von Atomen anderer Elemente versehen, in ein dünnes Oxid „einpacken“ und mit metallischen Kontakten versehen. „Aber auch wenn die Drähte am Ende keine Anwendung in der Elektronik finden sollten, könnten unsere Untersuchungen doch zeigen, wo die Grenzen der Silizium-Elektronik liegen“, erklärt Minamisawa.

Das Forschungsprojekt wurde vom Schweizerischen Nationalfonds SNF und der Forschungsinitiative Nano-Tera.ch gefördert.

Text: Paul Piwnicki
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt/Ansprechpartner:
Dr. Hans Sigg, Labor für Mikro- und Nanotechnologie; Paul Scherrer Institut, 5232 Villigen PSI, Schweiz;
Telefon: +41 56 310 40 48, E-Mail: hans.sigg@psi.ch

Dr. Renato Minamisawa Labor für Mikro- und Nanotechnologie; Paul Scherrer Institut, 5232 Villigen PSI, Schweiz;
Telefon: +41 56 310 58 07; renato.minamisawa@psi.ch

Originalveröffentlichung:
Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5 %
R.A. Minamisawa, M.J. Süess, R. Spolenak , J. Faist, C. David, J. Gobrecht, K.K. Bourdelle & H. Sigg

Nature Communications, 2 October 2012; DOI: 10.1038/ncomms2102 http://dx.doi.org/10.1038/ncomms2102

Dagmar Baroke | Paul Scherrer Institut (PSI)
Weitere Informationen:
http://www.psi.ch/lmn/
http://psi.ch/JqpV

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Projekt CeGlaFlex: Hauchdünne, bruchsichere und biegsame Keramik und Gläser
24.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Löschbare Tinte für den 3-D-Druck
24.04.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie