Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Silizium – fast zum Zerreissen verspannt

02.10.2012
Mechanisch extrem verspannte Silizium-Nanodrähte sind eine mögliche Grundlage für effizientere Transistoren

Zieht man ein Stück Silizium auseinander, erzeugt man in dessen Inneren eine mechanische Spannung, die die elektronischen Eigenschaften des Materials deutlich verbessert. Mit verspanntem Silizium lassen sich also z. B. schnellere und leistungsfähigere Mikroprozessoren bauen.


Martin Süess und Renato Minamisawa bereiten am Elektronenmikroskop eine Untersuchung der Nanodrähte vor. (Foto: Paul Scherrer Institut/F. Reiser)

Forscher des Paul Scherrer Instituts und der ETH Zürich haben nun ein Verfahren entwickelt, mit dem sie in einer Siliziumschicht 30 Nanometer dünne, verspannte Drähte erzeugen können. Deren Spannung ist die höchste, die bislang in einem Material beobachtet worden ist, das als Grundlage für Elektronikbauteile dienen kann. Ziel ist es, auf Basis solcher Drähte leistungsfähige Transistoren für Mikroprozessoren herzustellen.

Bei dem Verfahren beginnt man mit einer dünnen Siliziumschicht, die durch Befestigung auf einer Unterlage schon eine Spannung hat. Durch gezieltes Wegätzen des umgebenden Materials erzeugt man in der Siliziumschicht den dünnen Draht, der wie eine winzige Brücke über einer Schlucht hängt und an ihrer schmalsten Stelle die höchste Spannung aufweist. Über die Ergebnisse berichten die Forscher in der neuesten Ausgabe des Online-Journals Nature Communications.

Die Möglichkeiten, Mikroprozessoren auf Siliziumbasis leistungsfähiger zu machen, indem man deren einzelne Bauteile immer kleiner macht, stossen allmählich an ihre Grenzen. Es gibt aber einen anderen vielversprechenden Weg, der zum Teil schon von der Industrie genutzt wird: Wenn man Silizium ausdehnt oder auch komprimiert, entsteht eine mechanische Spannung, die die elektronischen Eigenschaften des Materials verbessern kann. Zum Beispiel erhöht eine Zugsverspannung, wenn sie in die richtige Richtung wirkt, die Beweglichkeit der Elektronen, sodass Transistoren aus so verspanntem Silizium als Schalter deutlich schneller sind.

„Es ist an sich keine Kunst, einen Draht zu verspannen – man könnte einfach an beiden Enden kräftig ziehen“, erklärt Hans Sigg vom Labor für Mikro- und Nanotechnologie am Paul Scherrer Institut „Das Problem ist, dass man einen solchen Draht in dem verspannten Zustand in ein elektronisches Bauteil einbauen muss.“

30 Nanometer breite Silizium-Brücke

Nun haben Forscher am Paul Scherrer Institut ein Verfahren entwickelt, mit dem sie Siliziumdrähte erzeugen können, die fest mit dem umgebenden Material verbunden sind und eine Spannung aufweisen, die mehr als doppelt so gross ist wie die, die in heute verfügbaren Bauteilen genutzt wird. Als Ausgangsmaterial haben sie industriell hergestellte Substrate mit leicht verspannter Siliziumschicht auf einer Siliziumoxidunterlage benützt.

„Das war uns sehr wichtig, denn damit zeigen wir, dass unser Verfahren verträglich ist mit den in den Chip-Fabriken gebräuchlichen Materialien und Herstellungsverfahren“, sagt Hans Sigg. „Das Material kann man sich so vorstellen, dass das Silizium in alle Richtungen auseinandergezogen worden ist, bevor man es auf der Oxidunterlage befestigt hat“, erklärt Renato Minamisawa vom Paul Scherrer Institut, der die Experimente zusammen mit Martin Süess von der ETH Zürich durchgeführt hat. Die Unterlage hält das Silizium so stark fest, dass es sich nicht mehr zusammenziehen kann.“

Nun ätzt man geschickt gewählte Teile der Siliziumschicht und dann deren Unterlage mit entsprechenden Ätzmitteln weg, sodass schliesslich aus der Siliziumschicht ein dünner Draht entsteht, 30 Nanometer breit und 15 Nanometer dick, der nur an seinen beiden Enden mit dem Rest des Materials verbunden ist. Das Verfahren ist ein Beispiel für die Möglichkeiten moderner Nanotechnologie. So lassen sich in einer Siliziumschicht Tausende solcher Drähte mit genau vorgegebenem Spannungszustand fehlerfrei herstellen. Das Verfahren ist also sehr zuverlässig. „Und es ist skalierbar, das heisst, man kann die Teile mit diesem Verfahren im Prinzip beliebig klein machen“, betont Sigg.

Schnelle Transistoren dank extremer Verspannung

„Da sich jetzt die ganze Kraft, die sich vor dem Ätzen über einen grösseren Bereich verteilt hat, auf den Draht konzentriert, entsteht darin eine sehr starke Spannung“, so Minamisawa, „die stärkste Spannung, die man im Silizium je erzeugt hat, vermutlich fast die stärkste, die möglich ist, bevor das Material bricht.“ Um die Spannungsverteilung im Detail zu bestimmen, wurden Ramanspektroskopische Messungen und Computersimulationen im Labor für Nanometallurgie unter Ralph Spolenak an der ETH ausgeführt. In Zukunft sollen die Drähte ebenfalls an der Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts untersucht werden. Vor allem wird man aber messen wollen, wie stark sich die elektrischen Eigenschaften des Materials verbessert haben.

Das endgültige Ziel wäre, diese Silizium-Nanodrähte als schnelle Transistoren innerhalb von Mikroprozessoren zu nutzen. Dafür werden die Forscher nun mit Kooperationspartnern untersuchen, wie man diese Drähte in eine Transistorstruktur einbetten kann. Dazu muss man sie „dotieren“, also mit kleinen Mengen von Atomen anderer Elemente versehen, in ein dünnes Oxid „einpacken“ und mit metallischen Kontakten versehen. „Aber auch wenn die Drähte am Ende keine Anwendung in der Elektronik finden sollten, könnten unsere Untersuchungen doch zeigen, wo die Grenzen der Silizium-Elektronik liegen“, erklärt Minamisawa.

Das Forschungsprojekt wurde vom Schweizerischen Nationalfonds SNF und der Forschungsinitiative Nano-Tera.ch gefördert.

Text: Paul Piwnicki
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt/Ansprechpartner:
Dr. Hans Sigg, Labor für Mikro- und Nanotechnologie; Paul Scherrer Institut, 5232 Villigen PSI, Schweiz;
Telefon: +41 56 310 40 48, E-Mail: hans.sigg@psi.ch

Dr. Renato Minamisawa Labor für Mikro- und Nanotechnologie; Paul Scherrer Institut, 5232 Villigen PSI, Schweiz;
Telefon: +41 56 310 58 07; renato.minamisawa@psi.ch

Originalveröffentlichung:
Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5 %
R.A. Minamisawa, M.J. Süess, R. Spolenak , J. Faist, C. David, J. Gobrecht, K.K. Bourdelle & H. Sigg

Nature Communications, 2 October 2012; DOI: 10.1038/ncomms2102 http://dx.doi.org/10.1038/ncomms2102

Dagmar Baroke | Paul Scherrer Institut (PSI)
Weitere Informationen:
http://www.psi.ch/lmn/
http://psi.ch/JqpV

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Dresdner Forscher drucken die Welt von Morgen
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Neues Verfahren bringt komplex geformte Verbundwerkstoffe in die Serie
23.01.2017 | Evonik Industries AG

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie