Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selektives Beschichten mit Schaltzeiten von nur 30 Millisekunden ohne Maskierung oder Abdeckung

22.04.2014

Schnelles Schalten von Beschichtungsprozessen und gasstromgetragener pulverförmiger Materialien

Das modular aufgebaute Atmosphären-Plasmasystem Plasmabrush PB3 ermöglicht, nahezu alle Werkstoffe mit pulverförmigen Materialien direkt zu metallisieren oder zu beschichten.


Das neue Pulverschaltventil lässt sich einfach in das Plasmabeschichtungssystem integrieren und ermöglicht, den Pulverstrom zum Plasmastrahl innerhalb von nur 30 Millisekunden herzustellen oder zu unterbrechen.


Das schnelle Schalten macht insbesondere bei partiellen Beschichtungen aufwendige Maskierungsarbeiten überflüssig. Der Schaltvorgang wird automatisch überwacht.

Fotos: Reinhausen Plasma

Dank eines neuen Pulverschaltventils lässt sich der Pulverstrom innerhalb von 30 Millisekunden zu- und wegschalten, wobei eine scharfe Trennlinie erzielt wird. Dies eröffnet bei der fertigungsintegrierten, selektiven Beschichtung/Metallisierung beispielsweise im Bereich der elektrischen Kontaktierungs-/Verbindungstechnik neue Möglichkeiten. Für bestehende Prozesse ergibt sich durch den Wegfall bisher erforderlicher Maskierungen technisches und wirtschaftliches Optimierungspotenzial. 

Die von der Reinhausen Plasma GmbH entwickelte Beschichtungstechnologie basiert auf dem modularen Plasmasystem Plasmabrush PB3 und einer Pulverprozesseinheit. Sie fördert Mikropulver kontinuierlich und agglomeratfrei in den anwendungsgerecht ausgelegten Plasmastrahl, durch den die Pulver auf dem Substrat eine haltbare Schicht erzeugen.

Als Beschichtungsstoff lassen sich praktisch alle Materialien verarbeiten, die in Pulverform zu bringen sind und einen Schmelzpunkt von unter 1.200°C haben. Dies ermöglicht Inline-Direktbeschichtungsprozesse unter Atmosphärendruck auf nahezu allen Werkstoffen – von Kunststoffen und Metallen über Glas und Keramik bis hin zu Schaum- und Verbundstoffen, Textilien, Leder und Karton.

Insbesondere bei der Beschichtung/Metallisierung dreidimensionaler Bauteile aus Kunststoff, beispielsweise 3D-MID, bietet das Verfahren technische und wirtschaftliche Vorteile. Bei einer nur partiell erforderlichen Beschichtung waren bisher jedoch häufig aufwendige Maskierungsarbeiten notwendig. 

Pulverstrom in 30 Millisekunden zu- und wegschalten

Damit macht das neue Pulverschaltventil PSU nun Schluss. Es lässt sich einfach und schnell in das System integrieren, auch in bestehende. Innerhalb von nur 30 Millisekunden stellt das PSU die Pulverzufuhr zum Plasmastrahl her oder unterbricht sie. Dadurch können partielle Beschichtungen und Metallisierungen auf Teilen mit komplexer Geometrie trennscharf ohne Maskierungen hergestellt werden. Form und Größe der Beschichtung können dabei frei definiert werden. So lässt sich beispielsweise für eine Kontaktierung in der LED-Technik ein einzelner 5 x 5 Millimeter großer Kupferpunkt an einer genau definierten Stelle aufbringen. Ebenso ist es möglich, ohne Unterbrechung des Prozesses die Substratoberfläche, beispielsweise von Thermoplasten und anderen schwierig zu beschichtenden Kunststoffen, zunächst nur mit dem Plasmastrahl zu aktivieren und anschließend direkt zu beschichten. Das während der Unterbrechung geförderte Pulver kann in einem Behälter gesammelt und wiederverwendet oder über eine Absaugung entsorgt werden.

Durch die einfache Prozessführung mit automatischer Überwachung des Schaltvorgangs, die Schnittstelle zu einer übergeordneten Steuerung, die Verkürzung des Beschichtungsprozesses und den geringen Platzbedarf bietet das neue PSU nicht nur bei partiellen Beschichtung, Metallisierung und Kontaktierung zwei- und dreidimensionaler Substrate und Bauteile ein enormes Rationalisierungspotenzial. 

Vorteile auch in anderen Anwendungsfeldern

Als eigenständige Komponente kann das neue Pulverschaltventil seine Vorteile auch in anderen Prozessen ausspielen, in denen pulverförmige Materialien gasstromgetragen gelenkt werden. Dazu zählen beispielsweise die Spritzgießtechnik, das 3D-Drucken oder auch das thermische Spritzen. 

Weitere Informationen bei der Reinhausen Plasma GmbH, Regensburg,

Telefon +49 941 4090-9100, www.reinhausen-plasma.com

Plasmabrush® ist ein eigetragenes Markenzeichen der Reinhausen Plasma GmbH.

Über die Reinhausen Plasma GmbH

Die Reinhausen Plasma GmbH ist ein Tochterunternehmen der ebenfalls in Regensburg ansässigen Maschinenfabrik Reinhausen GmbH, dem Weltmarkt- und Technologieführer für die Regelung von Leistungstransformatoren. Reinhausen Plasma versteht sich als innovativer Anbieter von Plasmalösungen für die Oberflächenveredelung und –beschichtung. Mit der Entwicklung der kalt.aktiven Atmosphärendruck-Plasmawerkzeuge plasmabrush und piezobrush, die sich durch niedrige Temperatur, geringe Gasgeschwindigkeit, extreme Spaltgängigkeit des Plasmas und hohe Reinheit der Gase auszeichnen, setzt das Unternehmen in der Reinigung und Oberflächenaktivierung mit Plasma neue Maßstäbe. Das patentierte plasmadust-Verfahren ermöglicht es erstmals, 2- und 3-dimensionale Bauteile aus nahezu allen Werkstoffen ohne Lösemittel (VOC-frei) sowie energieeffizient direkt aus einem kalt-aktiven Plasmazu beschichten und zu metallisieren.

Ansprechpartner für Redaktionen:

SCHULZ. PRESSE. TEXT., Doris Schulz, Journalistin (DJV), Landhausstrasse 12, 70825 Korntal, Deutschland, Fon: +49 (0)711 854085, ds@pressetextschulz.de, www.schulzpressetext.de 

Reinhausen Plasma GmbH, Daniel Fisch, Weidener Straße 16, 93057 Regensburg, Fon: +49 (0)941 40909133, d.fisch@reinhausen-plasma.com,

www.reinhausen-plasma.com

Daniel Fisch | SCHULZ. PRESSE. TEXT.

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics