Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnell, präzise, aber nicht kalt

17.05.2017

Am 26. und 27. April 2017 trafen sich 150 Experten aus Forschung und Industrie zum 4. UKP-Workshop: Ultrafast Laser Technology in Aachen. Die industrielle Anwendung ultrakurzer Laserpulse stand auch dieses Mal im Mittelpunkt des Workshops, organisiert vom Fraunhofer-Institut für Lasertechnik ILT. Aufsehen erregten allerdings die Grundlagenforscher, die mit relativ einfachen Formeln zeigten, dass die oft beschworene »Cold Ablation« der Piko- und Femtosekundenlaser bei unsachgemäßer Parameter- und Systemauswahl bei höheren Leistungen ganz und gar nicht kalt ist.

Ultrakurze Laserpulse haben enorme Vorteile: Ihr Abtrag ist bis in den Sub-Mikrometerbereich präzise, das abgetragene Material verdampft sofort und es gibt weder Schmelze noch Spritzer. Das macht sie für viele Anwendungen interessant: Mediziner nutzen sie schon lange für Augenoperationen, industrielle Anwendungen in der Elektronik und Konsumgüterbranche bilden heute schon wichtige Marktsegmente ab und versprechen ein großes Anwendungsportfolio.


Produktivitätssteigerung ist derzeit die größte Frage bei UKP-Lasern. Die Anwendung von Multistrahlsystemen stellt eine der möglichen Lösungen dar.

Fraunhofer ILT, Aachen.

Als Haupthindernis für die breite industrielle Anwendung galten bis vor wenigen Jahren die komplizierten Strahlquellen. Das hat sich geändert: Alle großen Laserhersteller bieten heute solide Systeme im Leistungsbereich bis 100 W an. Schwieriger erscheint es derzeit, diese Leistung auch effizient auf das Werkstück zu bekommen. Entsprechend spannend sind die Debatten zu Systemtechnik und Applikationsentwicklung.

Alle zwei Jahre trifft sich die UKP-Community in Aachen, um Fortschritte bei der Anwendung ultrakurzer Laserpulse zu diskutieren. Dafür bildet der »UKP-Workshop: Ultrafast Laser Technology« sämtliche Aspekte der Technologieentwicklung ab: Von den Grundlagen bis hin zu vollautomatisierten Systemen für die industrielle Anwendung wird der Stand der Technik präsentiert.

Die nicht ganz so kalte Ablation

Thermische Effekte und die Effizienz bei der Anwendung von UKP-Lasern mit hohen Leistungen beschäftigen Forscher wie Prof. Beat Neuenschwander von der Berner Fachhochschule Burgdorf (Schweiz) seit Jahren. Er zeigte, dass bei hohen Leistungen sehr wohl Wärme im Werkstück deponiert wird und dass sie erhebliche Auswirkungen auf den Ablationsprozess hat. Er hat auch erste Übersichten erarbeitet, welche Parameter bei welchem Material zu einem optimalen Abtrag führen.

Die Theorie zu den thermischen Effekten fasste Prof. Thomas Graf vom IFSW in Stuttgart in einige einfache Formeln. Mit ebenso klaren Worten zeigte er auch die Grenzen auf: »Wieviel Wärme bei ultrakurzen Pulsen im Material zurückbleibt, haben wir noch nicht vollständig verstanden« sagte er. »Wir arbeiten aktuell daran, mit Simulationen auf molekularer Ebene die Vorgänge besser zu verstehen.«

In einem waren sich beide Wissenschaftler einig: Die thermischen Effekte beim Einsatz von Hochleistungs-UKP-Lasern sind absolut kritisch für die Ablationsprozesse. Ohne ein genaues Verständnis der Absorptions- und Wärmeleitungsprozesse wird sich kaum ein industrieller UKP-Prozess planen lassen. Viele Details sind für Kupfer, Stahl und andere Materialien in den letzten Jahren schon erforscht worden, aber für eine vollständige Beschreibung der thermischen Effekte reicht das derzeitige Wissen noch nicht.

Prozesstechnik in der Erprobung

Neben der Frage, wie angesichts der thermischen Effekte die Prozesse zu optimieren sind, wurde auch in diesem Jahr viel über Prozess- und Systemtechnik diskutiert. »Es geht darum, wie wir die PS auf die Straße bringen« fasste Workshop-Organisator Dr. Arnold Gillner vom Fraunhofer ILT die Debatte zusammen.

Denn einerseits wurden zwar extrem leistungsfähige Strahlquellen (EdgeWave, AMPHOS, Fraunhofer ILT) mit mehreren 100 Watt präsentiert. Andererseits befindet sich die nötige Systemtechnik, um diese Leistungen auch für reale Produktivitätssteigerung einzusetzen, derzeit noch in der Entwicklung.

Vorgestellt wurden Scanner mit über 1.000 m/s für Einzelstrahlverfahren (Scanlab) oder auch Multistrahlverfahren vom Fraunhofer ILT, wo mit bis zu 600 Strahlen parallel gearbeitet wird. Beide Ansätze sind jetzt in der industriellen Erprobung.

Beim Thema Strahlerzeugung und -Verteilung stand die Idee des »Puls on demand« zur Debatte - eine Technik zur Erzeugung beliebiger Pulsfolgen. Die Ergebnisse sind dabei noch nicht voll zufriedenstellend, wie auch die Synchronisation von Strahlquellen, Scannern und Prozessen weiter eine Herausforderung bleibt.

Zur Strahlführung mit Spezialfasern (PT Photonic Tools) gab es Erfreuliches zu berichten: Die Zerstörschwellen der hier verwendeten Photonic Crystal Fibers von 1 GW/cm² decken derzeit die meisten Anwendungsfälle ab. Interessant sind die Möglichkeiten, über eine spezielle Gasfüllung der Hohlfasern zusätzliche Effekte wie Pulsverkürzung oder Wellenlängenveränderungen zu bewirken.

Trotz der noch begrenzten Zahl industrieller Anwendungen gab es beim Thema Strahlquellen wieder die Forderung, mehr Systeme mit über 100 W Leistung zu entwickeln. Positiv wurde dabei bemerkt, dass bei Pulsdauern unter 200 fs jetzt auch Ytterbium-Systeme verfügbar sind und somit auf teure Ti:Sa-Lösungen verzichtet werden kann.

UKP Technik für die Serienfertigung

Auch wenn der Schwerpunkt der Debatte derzeit bei der Prozesstechnik liegt, so gibt es durchaus schon großindustrielle Anwendungen, wo vollautomatische Systeme mit UKP-Lasern arbeiten. Dr. Gerrit Heinrich (Manz AG) präsentierte zum Beispiel ein vollautomatisches System mit zwei Strahlköpfen für die Glasbearbeitung.

3D Micromac stellte mehrere automatische Systeme aus dem Solar- und Halbleiterbereich vor, speziell auch für die Bearbeitung transparenter Materialien. GF Machining Solutions (Schweiz) zeigte ein System mit kombiniertem Nano- und Pikosekundenlaser. Die Märkte werden im Bereich der Oberflächenbearbeitung (Texturierung) gesehen.

Spannend war auch die Anwendung im Druckbereich. Hier wurden im Rahmen eines Forschungsprojektes verschiedene UKP-Lösungen ausprobiert und schnell große Flächen bearbeitet. Die Mikrostrukturierung großer (Ober-)Flächen erscheint dabei als eine Anwendung mit erheblichem Potenzial.

Wo geht der Trend hin?

»Es fehlt noch eine richtige UKP-Werkzeugmaschine« kommentierte Dr. Arnold Gillner den Stand bei der Systementwicklung. Mehrere Nischenlösungen haben sich etabliert, viele neue Applikationen werden ausprobiert, aber ein einfaches System für vielfältige Anwendungen ist noch nicht in Sicht.

Fest steht jedoch eines: Die Zukunft liegt in der Produktivitätssteigerung. Dafür müssen sowohl die thermischen Effekte noch besser erforscht, als auch robuste Lösungen in der Systemtechnik entwickelt werden.

Eine intensive Vernetzung der Forscher, Systementwickler und Anwender ist dabei unabdingbar und wird zum Beispiel vom UKPL Innovation Network aktiv vorangetrieben. Wenn sich die Community zum »5. UKP-Workshop: Ultrafast Laser Technology« am 10. und 11. April 2019 trifft, dürfte es wieder spannend werden. Denn auch da waren sich die Teilnehmer einig: Die breite Anwendung der UKP-Laser fängt gerade erst an.

Ansprechpartner

Dr.-Ing. Arnold Gillner
Leiter des Kompetenzfeldes Abtragen und Fügen
Telefon +49 241 8906-148
E-Mail arnold.gillner@ilt.fraunhofer.de

Weitere Informationen:

http://www.ultrakurzpulslaser.de
http://www.ilt.fraunhofer.de

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Weitere Berichte zu: ILT Laser Laserpulse Lasertechnik Photonic Prozesstechnik Strahlquellen Systemtechnik

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Smarte Rollstühle, vorausschauende Prothesen
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie