Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schadstoffe im Abwasser mit Plasma abbauen

30.07.2014

Einen neuen Ansatz für die Reinigung von Abwässern mit biologisch schwer abbaubaren Verbindungen untersuchen Fraunhofer-Wissenschaftler in dem vom BMBF geförderten Projekt »Wasserplasmax«. Mit einem ersten Plasmareaktor konnten sie zuvor bereits Cyanide erfolgreich abbauen.

Halogenierte Verbindungen aus Industrieabwässern, beispielsweise fluorierte Tenside, sind ebenso wie einige Arzneimittel aus Klinikabwässern oder Cyanid-Verbindungen aus der Galvanik nur schwer biologisch abbaubar. Um zu verhindern, dass sich diese Schadstoffe in der Umwelt anreichern, muss das Abwasser mit speziellen Reinigungsverfahren behandelt werden.


Gelangt UV-Strahlung auf photokatalytisch aktive Oberflächen, werden Radikale erzeugt, welche Schadstoffe im Wasser abbauen können. Das Bild zeigt eine photokatalytisch beschichtete Probe unter Wasser. Durch die Photokatalyse wird Wasser in Sauerstoff und Wasserstoff gespalten.

© Fraunhofer IGB

Hierzu wird das Abwasser in der Regel mit oxidativ wirkenden Techniken aufbereitet, die beispielsweise Wasserstoffperoxid oder Ozon als Oxidationsmittel nutzen. Einen neuen Ansatz verfolgt das vom Bundesministerium für Bildung und Forschung (BMBF) als »wissenschaftliches Vorprojekt« (WiVoPro) geförderte Projekt »Wasserplasmax«.

In diesem Projekt untersuchen Wissenschaftler am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, wie Schadstoffe im Abwasser mithilfe von Plasmaverfahren abgebaut werden können – mit oxidierenden Radikalen und UV-Strahlung, welche direkt im Plasma erzeugt werden.

Ein Plasma ist ein ionisiertes Gas, das neben Ionen und Elektronen auch chemische Radikale und weitere elektronisch angeregte Teilchen sowie kurzwellige Strahlung enthält. Ein solches Plasma lässt sich durch ein elektromagnetisches Feld, beispielsweise durch Anlegen einer Hochspannung, zünden.

Zur Anwendung in der Wasserreinigung eignet sich ein Atmosphärendruckplasma. »Bringt man verunreinigtes Wasser in Kontakt mit einem solchen Plasma, so reagieren die Radikale mit den im Wasser gelösten Schadstoffen. Auch die durch das Plasma erzeugte Strahlung wirkt über photochemische Prozesse auf die Schadstoffe ein. In beiden Fällen werden die Schadstoffe oxidiert und dadurch unschädlich gemacht«, erläutert Dr. Michael Haupt, Leiter des Projekts und Gruppenleiter »Plasmatechnik und dünne Schichten« am Fraunhofer IGB, das Prinzip.

Dass die Plasmatechnologie ein Ansatz ist, den es sich weiter zu verfolgen lohnt, konnten die Wissenschaftler mit Kollegen internationaler Partner in dem von der EU geförderten Projekt »Water Plasma« bereits zeigen. Wird cyanidhaltiges Industrieabwasser (1,5 mg Cyanid pro Liter) mit zusätzlicher hoher organischer Fracht in einem eigens konstruierten Plasmareaktor behandelt, nimmt die Konzentration von Cyanid innerhalb von nur 90 Minuten um mehr als 90 Prozent bis unter die Nachweisgrenze ab [M. Hijosa-Valsero, R. Molina, H. Schikora, M. Müller, J. M. Bayona, Water Research 47 (2013): 1701-1707].

»Um nun herauszufinden, welche Wechselwirkungen zwischen den reaktiven Plasmaspezies und im Wasser gelösten Schadstoffen am besten zum Abbau der Schadstoffe führen, wollen wir bei Wasserplasmax drei verschiedene Reaktortypen aufbauen und umfassend testen«, beschreibt Haupt den aktuellen Fokus. Bei einem Reaktor wird daher, wie auch zuvor im EU-Projekt, ein kontinuierlicher Wasserfilm direkt am Plasma vorbeiströmen. In einem zweiten Reaktor soll das zu behandelnde Abwasser zunächst mittels einer Düse zerstäubt werden, sodass fein vernebelte Tröpfchen die Plasmazone passieren.

»In einem dritten Reaktortyp schließlich wollen wir untersuchen, ob zusätzliche photokatalytische Schichten die Abbauprozesse verstärken«, verrät Haupt. Fällt UV-Licht auf photokatalytische Oberflächen, so werden Radikale erzeugt. »Wenn wir die photokatalytischen Schichten so in den Reaktor integrieren, dass die im Plasma erzeugte UV-Strahlung genutzt werden kann, könnten theoretisch ohne zusätzlichen Energiebedarf weitere reaktive Radikale entstehen«, ist der Wissenschaftler überzeugt.

Die Reaktorkonfiguration mit den besten Ergebnissen soll schließlich als Demonstrator aufgebaut werden, um reales Industrieabwasser im größeren Maßstab zu untersuchen. Neben einem möglichst vollständigen Abbau der Modellschadstoffe spielt auch ein geringer Energieverbrauch eine wichtige Rolle, um die Plasmatechnologie als neues Wasserbehandlungsverfahren etablieren zu können.

Dr. Michael Haupt | Fraunhofer-Institut
Weitere Informationen:
http://www.igb.fraunhofer.de/de/presse-medien/presseinformationen/2014/schadstoffe-im-abwasser-mit-plasma-abbauen.html

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Löschwasser mobil und kosteneffizient reinigen
18.01.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik