Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Remote-Laserschneiden verpasst Faserverbundbauteilen den letzten Schnitt

08.06.2012
Das Fraunhofer IWS Dresden stellt auf der LASYS in Stuttgart den Remote-Laserprozess für eine konturnahe, schnelle und flexible Endbearbeitung von TFP-Verbundstrukturen vor.
Extrem schnelle, präzise Steuerbarkeit und Bewegung des Lasers, kurze Wechselwirkungszeiten zwischen Laserstrahlung und Bauteil und daraus folgende Produktivitätssteigerungen gegenüber klassischen Fertigungsverfahren sind die Vorteile des Remote-Laserstrahlschneidens, welches das Fraunhofer IWS für eine breite Palette von Kunststoff- und Composite-Materialien zur Verfahrens- und Systementwicklung einsetzt.

So konnte beispielsweise die Remote-Lasertechnologie für das Schneiden von Airbaghüllen und -säcken bereits in die Industrie überführt und mit den entwickelten Systemen Produktivitätssteigerungen von bis zu 90 % gegenüber dem konventionellen Schnitt erreicht werden. Erfolgreich wurde der kontinuierliche Vorschub der Gewebebahn mit der schnellen Bewegung der Scannerspiegel kombiniert und somit ein effektiver und flexibler »on the fly«-Zuschnitt von Textilbahnen realisiert.

Textile Materialien ganz anderer Art sind in der Kunstrasenherstellung oder für Dämpfungsstrukturen im Einsatz, bei denen einzelne, praktisch endlose glatte Fasern – sogenannte Filamente – geometrisch definierte Kräuselungen erhalten müssen. Im Rahmen eines durch die Sächsische Aufbaubank geförderten Verbundvorhabens zwischen der Firma thoenes® Dichtungstechnik GmbH und dem Fraunhofer IWS wurde ein Remote-Laserprozess zum Texturieren entwickelt, der eine Kurzzeitwärmebehandlung von zeitgleich bis zu acht bewegten Kunststoff-Filamenten ermöglicht. Dabei wurde demonstriert, dass textile Kenndaten wie Restschrumpf, Einkräuselung und Zugfestigkeit reproduzierbar beeinflusst werden, ohne eine mechanische Schädigung oder ein Anschmelzen hervorzurufen.

Kraftflussgerechte Verstärkungsfaserstruktur in Form eines Brake-Boosters (Material: Carbonfaser-Composite). Institut für Polymerforschung IPF Dresden e.V. / Fraunhofer IWS Dresden

Das Streben nach energieeffizienten, leichten Transportmitteln für den Personen- und Güterverkehr verlangt auch Fertigungstechnologien für Faserverbundstrukturen, wie z. B. für carbon- oder glasfaserverstärkten Kunststoff (CFK bzw. GFK). In der Luft- und Raumfahrtindustrie werden diese Materialien zwar seit langem eingesetzt, jedoch konnte eine »high-volume«-Produktion, wie im Automobilbau gefordert, bislang nur ansatzweise umgesetzt werden. Dies liegt insbesondere an der aufwendigen Herstellungstechnologie so-wie der zeit- und kostenintensiven Endbearbeitung des Materials durch Wasserstrahlschneiden bzw. mechanische Bearbeitung mit hohem Werkzeugverschleiß.

Der klassische Laserprozess ist durch die starke thermische Schädigung der Schnittzone des Faser-Matrix-Verbundes keine Alternative für eine serientaugliche Massenproduktion. Deutliche Effizienzsteigerungen konnten hingegen beim Einsatz der hochdynamischen Strahlablenkung am Fraunhofer IWS erzielt werden. Die sehr hohen Prozessgeschwindigkeiten führen zu einer geringen Wechselwirkungszeit zwischen Laserstrahl und Werkstoffverbund, so dass die thermische Zersetzung des Matrixwerkstoffes an der Schnittfuge auf ein Minimum reduziert wird und der Prozess flexibel und hocheffizient gestaltet wer-den kann.

Eine spezielle Art von Faserverbundstrukturen stellen die mittels Tailored Fiber Placement (TFP) hergestellten Bauteile dar, deren industrieller Einsatz durch eine konturnahe, schnel-le und flexible Endbearbeitung mittels Remote-Laserschneiden einen enormen Schub erhalten wird. Bei dem im Institut für Polymerforschung Dresden e.V. entwickelten TFP-Verfahren werden Faserbündel (z. B. Carbon, Glas, Aramid), sogenannte Rovings oder Verstärkungsfäden, auf ein Trägermaterial in nahezu beliebiger Form und Dicke aufgestickt und danach mit einem Matrixwerkstoff infiltriert und verfestigt. Die durch vorab durchgeführte Kraftfluss- und Spannungsberechnungen entstandene bauteiloptimierte Struktur weist bei gleicher Steifigkeit ein viel geringeres Gewicht gegenüber klassischen Faserverbundstrukturen auf. Vielfältige Anwendungen, vom Brake-Booster für Fahrradbremsen über Rahmen von Flugzeugfenstern bis zu maßgeschneiderten Iso-grid-Strukturen im Leichtbau, sind die Einsatzgebiete der TFP-Technologie. Noch wird die gewünschte Endstruktur aufwendig mit mechanischen Bearbeitungsverfahren von den Matrixrückständen und dem Stickgrund freigelegt. Doch auch hier konnten die Wissenschaftler des Fraunhofer IWS den äußerst schnellen, flexiblen und präzisen Remote-Laserstrahlprozess für eine effizientere und letztlich kostengünstigere Bearbeitung zum Einsatz bringen.

Besuchen Sie uns vom 12. bis 14. Juni auf der LASYS in Stuttgart (Halle 4 Stand C31) und entdecken die Vorteile und die Vielfältigkeit der im Fraunhofer IWS entwickelten Verfahren und Systeme für die Remote-Laserbearbeitung!

Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28
Annett Klotzbach
Telefon: (0351) 83391 3235
Telefax: (0351) 83391 3300
E-Mail: annett.klotzbach@iws.fraunhofer.de
Presse und Öffentlichkeitsarbeit
Dr. Ralf Jäckel
Telefon: (0351) 83391 3444
Telefax: (0351) 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de

Dr. Ralf Jaeckel | Fraunhofer-Institut
Weitere Informationen:
http://www.iws.fraunhofer.de
http://www.iws.fraunhofer.de/de/presseundmedien/presseinformationen.html

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Ausweg aus dem Chrom-Verbot
30.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Schnell, präzise, aber nicht kalt
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften