Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Remote-Laserschneiden verpasst Faserverbundbauteilen den letzten Schnitt

08.06.2012
Das Fraunhofer IWS Dresden stellt auf der LASYS in Stuttgart den Remote-Laserprozess für eine konturnahe, schnelle und flexible Endbearbeitung von TFP-Verbundstrukturen vor.
Extrem schnelle, präzise Steuerbarkeit und Bewegung des Lasers, kurze Wechselwirkungszeiten zwischen Laserstrahlung und Bauteil und daraus folgende Produktivitätssteigerungen gegenüber klassischen Fertigungsverfahren sind die Vorteile des Remote-Laserstrahlschneidens, welches das Fraunhofer IWS für eine breite Palette von Kunststoff- und Composite-Materialien zur Verfahrens- und Systementwicklung einsetzt.

So konnte beispielsweise die Remote-Lasertechnologie für das Schneiden von Airbaghüllen und -säcken bereits in die Industrie überführt und mit den entwickelten Systemen Produktivitätssteigerungen von bis zu 90 % gegenüber dem konventionellen Schnitt erreicht werden. Erfolgreich wurde der kontinuierliche Vorschub der Gewebebahn mit der schnellen Bewegung der Scannerspiegel kombiniert und somit ein effektiver und flexibler »on the fly«-Zuschnitt von Textilbahnen realisiert.

Textile Materialien ganz anderer Art sind in der Kunstrasenherstellung oder für Dämpfungsstrukturen im Einsatz, bei denen einzelne, praktisch endlose glatte Fasern – sogenannte Filamente – geometrisch definierte Kräuselungen erhalten müssen. Im Rahmen eines durch die Sächsische Aufbaubank geförderten Verbundvorhabens zwischen der Firma thoenes® Dichtungstechnik GmbH und dem Fraunhofer IWS wurde ein Remote-Laserprozess zum Texturieren entwickelt, der eine Kurzzeitwärmebehandlung von zeitgleich bis zu acht bewegten Kunststoff-Filamenten ermöglicht. Dabei wurde demonstriert, dass textile Kenndaten wie Restschrumpf, Einkräuselung und Zugfestigkeit reproduzierbar beeinflusst werden, ohne eine mechanische Schädigung oder ein Anschmelzen hervorzurufen.

Kraftflussgerechte Verstärkungsfaserstruktur in Form eines Brake-Boosters (Material: Carbonfaser-Composite). Institut für Polymerforschung IPF Dresden e.V. / Fraunhofer IWS Dresden

Das Streben nach energieeffizienten, leichten Transportmitteln für den Personen- und Güterverkehr verlangt auch Fertigungstechnologien für Faserverbundstrukturen, wie z. B. für carbon- oder glasfaserverstärkten Kunststoff (CFK bzw. GFK). In der Luft- und Raumfahrtindustrie werden diese Materialien zwar seit langem eingesetzt, jedoch konnte eine »high-volume«-Produktion, wie im Automobilbau gefordert, bislang nur ansatzweise umgesetzt werden. Dies liegt insbesondere an der aufwendigen Herstellungstechnologie so-wie der zeit- und kostenintensiven Endbearbeitung des Materials durch Wasserstrahlschneiden bzw. mechanische Bearbeitung mit hohem Werkzeugverschleiß.

Der klassische Laserprozess ist durch die starke thermische Schädigung der Schnittzone des Faser-Matrix-Verbundes keine Alternative für eine serientaugliche Massenproduktion. Deutliche Effizienzsteigerungen konnten hingegen beim Einsatz der hochdynamischen Strahlablenkung am Fraunhofer IWS erzielt werden. Die sehr hohen Prozessgeschwindigkeiten führen zu einer geringen Wechselwirkungszeit zwischen Laserstrahl und Werkstoffverbund, so dass die thermische Zersetzung des Matrixwerkstoffes an der Schnittfuge auf ein Minimum reduziert wird und der Prozess flexibel und hocheffizient gestaltet wer-den kann.

Eine spezielle Art von Faserverbundstrukturen stellen die mittels Tailored Fiber Placement (TFP) hergestellten Bauteile dar, deren industrieller Einsatz durch eine konturnahe, schnel-le und flexible Endbearbeitung mittels Remote-Laserschneiden einen enormen Schub erhalten wird. Bei dem im Institut für Polymerforschung Dresden e.V. entwickelten TFP-Verfahren werden Faserbündel (z. B. Carbon, Glas, Aramid), sogenannte Rovings oder Verstärkungsfäden, auf ein Trägermaterial in nahezu beliebiger Form und Dicke aufgestickt und danach mit einem Matrixwerkstoff infiltriert und verfestigt. Die durch vorab durchgeführte Kraftfluss- und Spannungsberechnungen entstandene bauteiloptimierte Struktur weist bei gleicher Steifigkeit ein viel geringeres Gewicht gegenüber klassischen Faserverbundstrukturen auf. Vielfältige Anwendungen, vom Brake-Booster für Fahrradbremsen über Rahmen von Flugzeugfenstern bis zu maßgeschneiderten Iso-grid-Strukturen im Leichtbau, sind die Einsatzgebiete der TFP-Technologie. Noch wird die gewünschte Endstruktur aufwendig mit mechanischen Bearbeitungsverfahren von den Matrixrückständen und dem Stickgrund freigelegt. Doch auch hier konnten die Wissenschaftler des Fraunhofer IWS den äußerst schnellen, flexiblen und präzisen Remote-Laserstrahlprozess für eine effizientere und letztlich kostengünstigere Bearbeitung zum Einsatz bringen.

Besuchen Sie uns vom 12. bis 14. Juni auf der LASYS in Stuttgart (Halle 4 Stand C31) und entdecken die Vorteile und die Vielfältigkeit der im Fraunhofer IWS entwickelten Verfahren und Systeme für die Remote-Laserbearbeitung!

Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28
Annett Klotzbach
Telefon: (0351) 83391 3235
Telefax: (0351) 83391 3300
E-Mail: annett.klotzbach@iws.fraunhofer.de
Presse und Öffentlichkeitsarbeit
Dr. Ralf Jäckel
Telefon: (0351) 83391 3444
Telefax: (0351) 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de

Dr. Ralf Jaeckel | Fraunhofer-Institut
Weitere Informationen:
http://www.iws.fraunhofer.de
http://www.iws.fraunhofer.de/de/presseundmedien/presseinformationen.html

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Schnell, präzise, aber nicht kalt
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Neues Laserstrahl-Schweißverfahren des Fraunhofer IWS erlangt die Zertifizierung der DNV GL
16.05.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie