Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RapidMask: TH Köln entwickelt digitales Produktionsverfahren für Beatmungsmasken

31.08.2016

Auf Intensivstationen und bei neuromuskulären Erkrankungen ist die Passgenauigkeit einer Beatmungsmaske besonders wichtig. Deshalb wird jede Maske individuell angefertigt – für den Patienten unangenehm, da von seinem Gesicht ein Silikonabdruck angefertigt werden muss. Um das bisher durchgehend manuelle Produktionsverfahren effizienter zu gestalten, hat ein Forschungsteam am Institut für Produktentwicklung und Konstruktionstechnik der TH Köln mit dem Projekt RapidMask ein neues, digitales Verfahren entwickelt. Die Vorteile: Schnellere Produktion, größere Präzision bei der individuellen Anpassung der Masken sowie erheblich geringere Belastung für Mitarbeiter und Patienten.

Anders als bei einem Notfalleinsatz, bei dem Patientinnen und Patienten für kurze Zeit eine Standardmaske erhalten, sind in anderen medizinischen Bereichen individuell angepasste Beatmungsmasken notwendig.


Links der modellierte Gipsabdruck des herkömmlichen Produktionsverfahrens, rechts das softwaregenerierte Modell. (Bild: Thilo Schmülgen/TH Köln)

Auf Intensivstationen, bei neuromuskulären Erkrankungen oder einer Schlafapnoe beispielsweise, werden die Masken über einen längeren Zeitraum getragen. Sind sie nicht passgenau zur Gesichtsform, treten Leckagen auf und eine ausreichende Beatmung kann nicht sichergestellt werden. Auch Hautirritationen und Druckstellen können unangenehme Begleiterscheinungen sein.

Unter der Leitung von Prof. Dr. Alexander Boryczko entwickelten Marc Göttsche, Samuel Rothen und Isis Merit Cisneros, Studierende des Masters Maschinenbau, ein digitales Verfahren. Dabei werden die biometrischen Daten des Gesichts eines Patienten mit einem 3D-Scanner vermessen.

Aufbauend auf den daraus entstehenden Polygonnetzen erfolgt die weitere Verarbeitung aller Modelle der Gussform am Rechner in einer selbst entwickelten, digitalen Arbeitsumgebung. Das Modell der Gussform wird abschließend mit einem 3D-Drucker gedruckt, so dass im neuen Prozess lediglich die Befüllung der Gussform mit dem medizintechnisch zugelassenen Silikon und eine finale Feinbearbeitung der Beatmungsmaske manuell ausgeführt werden muss. Kooperationspartner des ZIM-Projekts ist die Mülheimer Firma AirTec Beatmungshilfen GmbH & Co. KG.

Manuelle Produktion zeitintensiv und gesundheitlich belastend

Bisher werden individuelle Beatmungsmasken manuell hergestellt. Auf das Gesicht der Patienten wird ein spezielles Abformsilikon aufgetragen. Während die Masse aushärtete, muss der Patienten durch zwei in den Nasenlöchern steckenden Röhrchen atmen. Die Silikonmasse wird anschließend als Negativabdruck mit Gips ausgegossen. Dieser Abdruck wird dann von Hand modelliert.

Scharfe Kanten werden nachgebessert und in bestimmten Bereichen Material auf- bzw. abgetragen, um die Dichtigkeit der Maske und den Tragekomfort sicherzustellen. So muss zum Beispiel am Kinn Material entfernt werden, weil der menschliche Kiefer im Schlaf bei Rückenlage zwei bis drei Zentimeter zurückfällt. Es folgen weitere Bearbeitungsschritte wie das Modellieren eines Hohlraummodells, einer Hartschale und eines Gegenstücks. Alle Komponenten werden auf die individuellen Gesichtsparameter angepasst.

Zusammengesetzt entsteht eine Gussform für die aus Silikon anzufertigende Maske. Der Arbeitsaufwand des Technikers beträgt dabei mehrere Stunden. Weist die Form beim Probetragen noch Passfehler auf, muss sie entsorgt und eine neue angefertigt werden. Durch die Arbeit mit den Gipsabdrücken sind die Mitarbeiterinnen und Mitarbeitern permanent dem Materialstaub ausgesetzt.

Software ermöglicht intuitives Arbeiten bei hoher Genauigkeit

Über das RapidMask-Verfahren entstehen die Masken nun softwaregesteuert. Dazu hat das Kölner Team eine eigene Arbeitsumgebung entwickelt, die intuitives Arbeiten bei hoher Genauigkeit ermöglicht: Für die Konfiguration einer Maske benötigt der Techniker nur noch rund 30 Minuten. Die Software basiert auf dem Programm Rhinoceros 3D und der Applikation Grasshopper. Mit ihr ist der gängige CAD-Umrechnungsweg über klassische Volumenmodelle nicht mehr notwendig.

„In der entwickelten Umgebung liegt der Schwerpunkt in der Modellierung komplexer Geometrien mit Polygonnetzen und der parametrischen Variation von Netzmodellen. Als Input-Daten nutzen 3D-Drucker eben Polygonnetze und keine Volumenmodelle“, so Professor Boryczko.

Derzeit ist es noch nicht möglich, den kompletten Arbeitsprozess zu automatisieren, d.h. über die Software direkt die fertige Silikonmaske statt einer Gussform zu drucken. Das scheitert noch am aktuellen Stand der Druckertechnologie, da für Medizinprodukte nur biokompatible Silikone zugelassen sind und diese im 3D-Druck noch nicht zuverlässig verarbeitet werden können.

Die Pressemitteilung auf unserer Internetseite finden Sie unter:

https://www.th-koeln.de/hochschule/rapid-mask_36437.php

Bildmaterial zur honorarfreien Verwendung bei Copyright-Angabe stellen wir Ihnen gerne zur Verfügung. Bitte wenden Sie sich dazu an
pressestelle@th-koeln.de.

Die TH Köln bietet Studierenden sowie Wissenschaftlerinnen und Wissenschaftlern aus dem In- und Ausland ein inspirierendes Lern-, Arbeits- und Forschungsumfeld in den Sozial-, Kultur-, Gesellschafts-, Ingenieur- und Naturwissenschaften. Zurzeit sind mehr als 24.000 Studierende in über 90 Bachelor- und Masterstudiengängen eingeschrieben. Die TH Köln gestaltet Soziale Innovation – mit diesem Anspruch begegnen wir den Herausforderungen der Gesellschaft. Unser interdisziplinäres Denken und Handeln, unsere regionalen, nationalen und internationalen Aktivitäten machen uns in vielen Bereichen zur geschätzten Kooperationspartnerin und Wegbereiterin. Die TH Köln wurde 1971 als Fachhochschule Köln gegründet und zählt zu den innovativsten Hochschulen für Angewandte Wissenschaften.

Weitere Informationen:

http://www.th-koeln.de

Petra Schmidt-Bentum | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics