Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Analysen machen Kraftwerke effizienter

07.06.2010
Siemens erforscht Analysemethoden, mit denen sich Kohlekraftwerke und auch Biogasanlagen effizienter steuern lassen. Die aktuelle Ausgabe der Zeitschrift Pictures of the Future berichtet von einem Spektroskopie-Verfahren, das mit relativ wenig Aufwand die Qualität von Kohle ermittelt.

Damit können Kraftwerksbetreiber ihre Brennparameter besser auf die Güte des Brennstoffs abstimmen. Im Labor wurde die Machbarkeit bereits nachgewiesen. Für 2011 ist eine erste Pilotanlage geplant. Der Einsatz in Biogasanlagen wird derzeit geprüft.


Die Effizienz eines Kohlekraftwerks hängt von der Qualität des Brennstoffs ab, die zum Beispiel je nach Herkunftsregion variiert. Kohle mit niedrigem Brennwert reduziert die Leistung des Kraftwerks, so dass die Kohlemenge im Brenner erhöht werden muss.

Die Abgasreinigung könnte ebenfalls optimal eingestellt werden, wenn für jede Kohleladung der Schwefelgehalt genau bekannt wäre. Zudem ließe sich die Schlackenbildung besser kontrollieren, wegen derer das Kraftwerk regelmäßig gewartet wird. Solche Analysen sind aber aufwändig – um den Brennwert zu bestimmen, wird die Kohle beispielsweise in einem Kalorimeter verbrannt und die freiwerdende Wärme gemessen.

Eine Alternative ist die Infrarot-Spektroskopie. Sie basiert darauf, dass Moleküle charakteristische Lichtspektren emittieren, wenn sie mit infrarotem Licht bestrahlt werden. Diese Spektren liefern Informationen über chemische Bindungen in der Probe, woraus auf bestimmte Elemente oder Stoffgruppen geschlossen werden kann. Die Forscher von Siemens Corporate Technology (CT) können deshalb nicht nur den Kohlenstoff-, Schwefel- und Wassergehalt der Probe bestimmen, sie können aus der Art der Bindungen sogar direkt auf den Brennwert schließen. Um eine wirtschaftliche Lösung zu bieten, setzen sie auf relativ günstige Spektrometer im nahen infraroten Wellenlängenbereich (NIR). Deren Spektren sind allerdings schwer auszuwerten, weil sich die Signale überlagern, die von einzelnen Bindungstypen herrühren. Siemens CT hat daher mit Methoden der statistischen Mathematik ein Verfahren entwickelt, das anhand von Referenzmessungen an bekannten Proben charakteristische Kurvenformen für die gesuchten Elemente identifiziert.

Mit der neuen Analysemethode messen die Forscher auch den Säuregehalt in Fermentern von Biogasanlagen. Der Parameter ist ein wichtiges Indiz für ein drohendes Absterben der Bakterien und damit ein Abschalten der Anlage. Im Sommer 2010 startet hierzu ein Pilotprojekt, das vom Technologie- und Förderzentrum des Freistaates Bayern gefördert wird. (RN 2010.06.1)

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Weitere Informationen:
http://www.siemens.de/innovation

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics